Advertisement

Climate Dynamics

, Volume 51, Issue 5–6, pp 1863–1883 | Cite as

Role of the Atlantic Multidecadal Variability in modulating the climate response to a Pinatubo-like volcanic eruption

  • Martin Ménégoz
  • Christophe Cassou
  • Didier Swingedouw
  • Yohan Ruprich-Robert
  • Pierre-Antoine Bretonnière
  • Francisco Doblas-Reyes
Article

Abstract

The modulation by the Atlantic multidecadal variability (AMV) of the dynamical climate response to a Pinatubo-like eruption is investigated for the boreal winter season based on a suite of large ensemble experiments using the CNRM-CM5 Coupled Global Circulation Model. The volcanic eruption induces a strong reduction and retraction of the Hadley cell during 2 years following the eruption and independently of the phase of the AMV. The mean extratropical westerly circulation simultaneously weakens throughout the entire atmospheric column, except at polar Northern latitudes where the zonal circulation is slightly strengthened. Yet, there are no significant changes in the modes of variability of the surface atmospheric circulation, such as the North Atlantic Oscillation (NAO), in the first and the second winters after the eruption. Significant modifications over the North Atlantic sector are only found during the third winter. Using clustering techniques, we decompose the atmospheric circulation into weather regimes and provide evidence for inhibition of the occurrence of negative NAO-type circulation in response to volcanic forcing. This forced signal is amplified in cold AMV conditions and is related to sea ice/atmosphere feedbacks in the Arctic and to tropical-extratropical teleconnections. Finally, we demonstrate that large ensembles of simulations are required to make volcanic fingerprints emerge from climate noise at mid-latitudes. Using small size ensemble could easily lead to misleading conclusions especially those related to the extratropical dynamics, and specifically the NAO.

Keywords

Volcanic eruptions Climate dynamics North Atlantic Oscillation Atlantic multidecadal variability Ensemble size Climate model 

Notes

Acknowledgements

This research was carried out within the projects: (i) MORDICUS funded by the French Agence Nationale de la Recherche (ANR-13-SENV-0002-02); (ii) SPECS funded by the European Commission’s Seventh Framework Research Programme under the grant agreement 308378; (iii) VOLCADEC funded by the Spanish program MINECO/FEDER (ref. CGL2015-70177-R). We thank Javier Garcia-Serrano for its comments about the NAO precursors, Omar Bellprat for its suggestions concerning the statistical analysis and François Massonnet for its recommendations in terms of graphical presentation. CC is grateful to Marie-Pierre Moine, Laure Coquart and Isabelle Dast for technical help to run the model. Computer resources have been provided by Cerfacs. We thank the two anonymous referees for their useful comments and suggestions to improve this manuscript.

References

  1. Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426(6964):274–278.  https://doi.org/10.1038/nature02101 CrossRefGoogle Scholar
  2. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR climate system model. Proc Nat Acad Sci 104(10):3713–3718.  https://doi.org/10.1073/pnas.0605064103 CrossRefGoogle Scholar
  3. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294(5542):581–584.  https://doi.org/10.1126/science.1063315 CrossRefGoogle Scholar
  4. Barnes EA, Solomon S, Polvani LM (2016) Robust wind and precipitation responses to the Mount Pinatubo eruption, as simulated in the CMIP5 models. J Clim 29(13):4763–4778.  https://doi.org/10.1175/JCLI-D-15-0658.1 CrossRefGoogle Scholar
  5. Barrier N, Treguier AM, Cassou C, Deshayes J (2013) Impact of the winter North-Atlantic weather regimes on subtropical sea-surface height variability. Clim Dyn 41(5–6):1159–1171.  https://doi.org/10.1007/s00382-012-1578-7 CrossRefGoogle Scholar
  6. Bittner M, Timmreck C, Schmidt H, Toohey M, Krüger K (2016a) The impact of wave-mean flow interaction on the Northern Hemisphere polar vortex after tropical volcanic eruptions. J Geophys Res Atmos 121(10):5281–5297.  https://doi.org/10.1002/2015JD024603 CrossRefGoogle Scholar
  7. Bittner M, Schmidt H, Timmreck C, Sienz F (2016b) Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophys Res Lett 43(17):9324–9332.  https://doi.org/10.1002/2016GL070587 CrossRefGoogle Scholar
  8. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18(4):820–829.  https://doi.org/10.3402/tellusa.v18i4.9712 CrossRefGoogle Scholar
  9. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172.  https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 CrossRefGoogle Scholar
  10. Bony S, Stevens B, Frierson DM, Jakob C, Kageyama M, Pincus R, Shepherd TG, Sherwood SC, Siebesma AP, Sobel AH, Watanabe M (2015) Clouds, circulation and climate sensitivity. Nat Geosci 8(4):261–268.  https://doi.org/10.1038/ngeo2398 CrossRefGoogle Scholar
  11. Branstator G, Teng H (2010) Two limits of initial-value decadal predictability in a CGCM. J Clim 23:6292–6311.  https://doi.org/10.1007/s00382-010-0977-x CrossRefGoogle Scholar
  12. Cai W, van Rensch P (2013) Austral summer teleconnections of Indo-Pacific variability: their nonlinearity and impacts on Australian climate. J Clim 26(9):2796–2810.  https://doi.org/10.1175/JCLI-D-12-00458.1 CrossRefGoogle Scholar
  13. Cane MA, Zebiak SE (1985) A theory for El Niño and the Southern oscillation. Science 228:1085CrossRefGoogle Scholar
  14. Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455(7212):523–527.  https://doi.org/10.1038/nature07286 CrossRefGoogle Scholar
  15. Cassou C, Terray L, Hurrell JW, Deser C (2004) North Atlantic winter climate regimes: spatial asymmetry, stationarity with time, and oceanic forcing. J Clim 17(5):1055–1068.  https://doi.org/10.1175/1520-0442(2004)017<1055:NAWCRS>2.0.CO;2 CrossRefGoogle Scholar
  16. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118:2494–2505.  https://doi.org/10.1002/jgrd.50125 CrossRefGoogle Scholar
  17. Christiansen B (2008) Volcanic eruptions, large-scale modes in the Northern Hemisphere, and the El Niño-Southern Oscillation. J Clim 21(5):910–922.  https://doi.org/10.1175/2007JCLI1657.1 CrossRefGoogle Scholar
  18. Deser C, Sun L, Tomas RA, Screen J (2016) Does ocean-coupling matter for the northern extra-tropical response to projected Arctic sea ice loss? Geophys Res Lett 43:2149–2157.  https://doi.org/10.1002/2016GL067792 CrossRefGoogle Scholar
  19. Dieppois B, Durand A, Fournier M, Diedhiou A, Fontaine B, Massei N, Nouaceur Z, Sebag D (2015) Low-frequency variability and zonal contrast in Sahel rainfall and Atlantic sea surface temperature teleconnections during the last century. Theor Appl Climatol 121(1–2):139–155.  https://doi.org/10.1007/s00704-014-1229-5 CrossRefGoogle Scholar
  20. Dinezio PN, Deser C, Okumura Y, Karspeck A (2017) Mechanisms controlling the predictability of 2-year La Nina. Clim Dyn 1–25  https://doi.org/10.1007/s00382-017-3575-3
  21. Ding Y, Carton JA, Chepurin GA, Stenchikov G, Robock A, Sentman LT, Krasting JP (2014) Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J Geophys Res Oceans 119(9):5622–5637.  https://doi.org/10.1002/2013JC009780 CrossRefGoogle Scholar
  22. Driscoll S, Bozzo A, Gray LJ, Robock A, Stenchikov G (2012) Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J Geophys Res Atmos.  https://doi.org/10.1029/2012JD017607 Google Scholar
  23. Emile-Geay J, Seager R, Cane MA, Cook ER, Haug GH (2008) Volcanoes and ENSO over the past millennium. J Clim 21(13):3134–3148.  https://doi.org/10.1175/2007JCLI1884.1 CrossRefGoogle Scholar
  24. Gao LH, Yan ZW, Quan XW (2015) Observed and SST-forced multidecadal variability in global land surface air temperature. Clim Dyn 44(1–2):359–369.  https://doi.org/10.1007/s00382-014-2121-9 CrossRefGoogle Scholar
  25. Gastineau G, Frankignoul C (2015) Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. J Clim, 28(4):1396–1416.  https://doi.org/10.1175/JCLI-D-14-00424.1 CrossRefGoogle Scholar
  26. Graf H-F, Li Q, Giorgetta MA (2007) Volcanic effects on climate: revisiting the mechanisms. Atmos Chem Phys 7(17):4503–4511.  https://doi.org/10.5194/acp-7-4503-2007 CrossRefGoogle Scholar
  27. Harvey BJ, Shaffrey LC, Woollings TJ (2014) Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim Dyn 43(5–6):1171–1182.  https://doi.org/10.1007/s00382-013-1883-9 CrossRefGoogle Scholar
  28. Harvey BJ, Shaffrey LC, Woollings TJ (2015) Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Clim Dyn 45(9–10):2847–2860.  https://doi.org/10.1007/s00382-015-2510-8 CrossRefGoogle Scholar
  29. Hawkins E, Smith RS, Gregory JM, Stainforth DA (2016) Irreducible uncertainty in near-term climate projections. Clim Dyn 46(11–12):3807–3819.  https://doi.org/10.1007/s00382-015-2806-8 CrossRefGoogle Scholar
  30. Hirono M (1988) On the trigger of El Niño Southern Oscillation by the forcing of early El Chichón volcanic aerosols. J Geophys Res Atmos 93(D5):5365–5384.  https://doi.org/10.1029/JD093iD05p05365 CrossRefGoogle Scholar
  31. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An Overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington, D.C. https://doi.org/10.1029/134GM01CrossRefGoogle Scholar
  32. Khodri M, Izumo T, Vialard J, Janicot S, Cassou C, Lengaigne M, Mignot J, Gastineau G, Guilyardi E, Lebas N, Robock A, McPhaden MJ (2017) Tropical explosive volcanic eruptions can trigger El Nino by cooling tropical Africa. Nat Commun 8(778):1–13.  httpS://doi.org/10.1038/s41467-017-00755-6
  33. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett.  https://doi.org/10.1029/2005GL024233 Google Scholar
  34. Labitzke K, McCormick MP (1992) Stratospheric temperature increases due to Pinatubo aerosols. Geophys Res Lett 19(2):207–210.  https://doi.org/10.1029/91GL02940 CrossRefGoogle Scholar
  35. Maher N, McGregor S, England MH, Gupta AS (2015) Effects of volcanism on tropical variability. Geophys Res Lett 42(14):6024–6033.  https://doi.org/10.1002/2015GL064751 CrossRefGoogle Scholar
  36. Marshall AG, Scaife AA, Ineson S (2009) Enhanced seasonal prediction of european winter warming following volcanic eruptions. J Clim 22(23):6168–6180.  https://doi.org/10.1175/2009JCLI3145.1 CrossRefGoogle Scholar
  37. Martin ER, Thorncroft C, Booth BBB (2014) The multidecadal Atlantic SST-sahel rainfall teleconnection in CMIP5 simulations. J Clim 27:784–806.  https://doi.org/10.1175/JCLI-D-13-00242.1 CrossRefGoogle Scholar
  38. McCarthy GD, Haigh ID, Hirschi JJM, Grist JP, Smeed DA (2015) Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521(7553):508–510.  https://doi.org/10.1038/nature14491 CrossRefGoogle Scholar
  39. Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52(8):1237–1256.  https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2 CrossRefGoogle Scholar
  40. Mudelsee M (2014) Climate time series analysis: classical statistical and bootstrap methods, 2nd edn. Springer, Cham.Google Scholar
  41. Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N (2016) The Pacific decadal Oscillation, revisited. J Clim 29(12):4399–4427.  https://doi.org/10.1175/JCLI-D-15-0508.1 CrossRefGoogle Scholar
  42. Ohba M, Shiogama H, Yokohata T, Watanabe M (2013) Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J Clim 26(14):5169–5182.  https://doi.org/10.1175/JCLI-D-12-00471.1 CrossRefGoogle Scholar
  43. Omrani N-E, Keenlyside NS, Bader J, Manzini E (2014) Stratosphere key for wintertime atmospheric response to warm atlantic decadal conditions. Clim Dyn 42:3–4.  https://doi.org/10.1007/s00382-013-1860-3 649–663CrossRefGoogle Scholar
  44. Ortega P, Lehner F, Swingedouw D, Masson-Delmotte V, Raible CC, Casado M, Yiou P (2015) A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523(7558):71–74.  https://doi.org/10.1038/nature14518 CrossRefGoogle Scholar
  45. Ottera OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3(10):688.  https://doi.org/10.1038/NGEO995 CrossRefGoogle Scholar
  46. Oudar T, Sanchez-Gomez E, Chauvin F, Cattiaux J, Terray L, Cassou C (2017) Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation. Clim Dyn.  https://doi.org/10.1007/s00382-017-3541-0 Google Scholar
  47. Pausata FS, Karamperidou C, Caballero R, Battisti DS (2016) ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: the role of the initial conditions. Geophys Res Lett 43(16):8694–8702.  https://doi.org/10.1002/2016GL069575 CrossRefGoogle Scholar
  48. Peings Y, Magnusdottir G (2014) Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. J Clim 27(1):244–264.  https://doi.org/10.1175/JCLI-D-13-00272.1 CrossRefGoogle Scholar
  49. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38(2):191–219.  https://doi.org/10.1029/1998RG000054 CrossRefGoogle Scholar
  50. Robock A, Mao J (1995) The volcanic signal in surface temperature observations. J Clim 8(5):1086–1103.  https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2 CrossRefGoogle Scholar
  51. Ruprich-Robert Y, Cassou C (2015) Combined influences of seasonal East Atlantic Pattern and North Atlantic Oscillation to excite Atlantic multidecadal variability in a climate model. Clim Dyn 44:229–253.  https://doi.org/10.1007/s00382-014-2176-7 CrossRefGoogle Scholar
  52. Ruprich-Robert Y, Msadek R, Castruccio F, Yeager S, Delworth T, Danabasoglu G (2017) Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2. 1 and NCAR CESM1 global coupled models. J Clim 30(8):2785–2810.  https://doi.org/10.1175/JCLI-D-16-0127.1 CrossRefGoogle Scholar
  53. Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32:L18715.  https://doi.org/10.1029/2005GL023226 CrossRefGoogle Scholar
  54. Shindell DT, Schmidt GA, Mann ME, Faluvegi G (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res 109(D5):D05104.  https://doi.org/10.1029/2003JD004151 CrossRefGoogle Scholar
  55. Siegert S, Bellprat O, Ménégoz M, Stephenson DB, Doblas-Reyes FJ (2017) Detecting improvements in forecast correlation skill: statistical testing and power analysis. Mon Weather Rev 145(2):437–450.  https://doi.org/10.1175/MWR-D-16-0037.1 CrossRefGoogle Scholar
  56. Slonosky VC, Yiou P (2001) The North Atlantic Oscillation and its relationship with near surface temperature. Geophys Res Lett 28:807–810.  https://doi.org/10.1029/2000GL012063 CrossRefGoogle Scholar
  57. Stenchikov G, Robock A, Ramaswamy V, Schwarzkopf MD, Hamilton K, Ramachandran S (2002) Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion. J Geophys Res Atmos 107(D24):4803.  https://doi.org/10.1029/2002JD002090 CrossRefGoogle Scholar
  58. Stenchikov G, Hamilton K, Robock A, Ramaswamy V, Schwarzkopf MD (2004) Arctic Oscillation response to the 1991 Pinatubo eruption in the SKYHI general circulation model with a realistic quasi-biennial Oscillation. J Geophys Res 109(D3):D03112.  https://doi.org/10.1029/2003JD003699 CrossRefGoogle Scholar
  59. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf HF (2006) Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res Atmos D07107.  https://doi.org/10.1029/2005JD006286 Google Scholar
  60. Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res 114:D16104.  https://doi.org/10.1029/2008JD011673 CrossRefGoogle Scholar
  61. Sun C, Li J, Jin FF (2015a) A delayed Oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim Dyn 45(7–8):2083–2099.  https://doi.org/10.1007/s00382-014-2459-z CrossRefGoogle Scholar
  62. Sun L, Deser C, Tomas RA (2015b) Mechanisms of Stratospheric and Tropospheric Circulation Response to Projected Arctic Sea Ice Loss. J Clim 28(19):7824–7845.  https://doi.org/10.1175/JCLI-D-15-0169.1 CrossRefGoogle Scholar
  63. Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5(11):788–792.  https://doi.org/10.1038/ngeo1595 CrossRefGoogle Scholar
  64. Swingedouw D, Ortega P, Mignot J, Guilyardi E, Masson-Delmotte V, Butler PG et al (2015) Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nat commun 6:6545.  https://doi.org/10.1038/ncomms7545 CrossRefGoogle Scholar
  65. Swingedouw D, Mignot J, Ortega P, Khodri M, Ménégoz M, Cassou C, Hanquiez V (2017) Impact of explosive volcanic eruptions on the main climate variability modes. Global Planet Change 150:24–45.  https://doi.org/10.1016/j.gloplacha.2017.01.006 CrossRefGoogle Scholar
  66. Tanaka HL, Tokinaga H (2002) Baroclinic instability in high latitudes induced by polar vortex: a connection to the Arctic Oscillation. J Atmos Sci 59(1):69–82.  https://doi.org/10.1175/1520-0469(2002)059<0069:BIIHLI>2.0.CO;2 CrossRefGoogle Scholar
  67. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  68. Terray L, Cassou C (2002) Tropical Atlantic sea surface temperature forcing of quasi-decadal climate variability over the North Atlantic-European region. J Clim 15(22):3170–3187.  https://doi.org/10.1175/1520-0442(2002)015<3170:TASSTF>2.0.CO;2 CrossRefGoogle Scholar
  69. Thomas MA, Giorgetta MA, Timmreck C, Graf H-F, Stenchikov G (2009) Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 - Part 2: Sensitivity to the phase of the QBO and ENSO. Atmos Chem Phys 9(9):3001–3009.  https://doi.org/10.5194/acp-9-3001-2009 CrossRefGoogle Scholar
  70. Toohey M, Krüger K, Bittner M, Timmreck C, Schmidt H (2014) The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure. Atmos Chem Phys 14(23):13063–13079.  https://doi.org/10.5194/acp-14-13063-2014 CrossRefGoogle Scholar
  71. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(324):14291–14214.  https://doi.org/10.1029/97JC01444 CrossRefGoogle Scholar
  72. Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Weather Rev 118(10):2056–2081.  https://doi.org/10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2 CrossRefGoogle Scholar
  73. Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Cassou C, Sénési S et al (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121.  https://doi.org/10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  74. Zambri B, Robock A (2016), Winter warming and summer monsoon reduction after volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5) simulations. Geophys Res Lett 43(20):10920–10928.  https://doi.org/10.1002/2016GL070460 CrossRefGoogle Scholar
  75. Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Lohmann K, Krueger K, Jungclaus JH (2012) Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39:419–444.  https://doi.org/10.1007/s00382-011-1167-1 CrossRefGoogle Scholar
  76. Zanchettin D, Timmreck C, Bothe O, Lorenz SJ, Hegerl G, Graf HF et al (2013a) Delayed winter warming: a robust decadal response to strong tropical volcanic eruptions? Geophys Res Lett 40(1):204–209.  https://doi.org/10.1029/2012GL054403 CrossRefGoogle Scholar
  77. Zanchettin D, Bothe O, Graf HF, Lorenz SJ, Luterbacher J, Timmreck C, Jungclaus JH (2013b) Background conditions influence the decadal climate response to strong volcanic eruptions. J Geophys Res Atmos 118(10):4090–4106.  https://doi.org/10.1002/jgrd.50229 CrossRefGoogle Scholar
  78. Zanchettin D, Khodri M, Timmreck C, Toohey M, Schmidt A, Gerber EP et al (2016) The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geosci Model Dev 9(8):2701–2719.  https://doi.org/10.5194/gmd-9-2701-2016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Barcelona Supercomputing CenterBarcelonaSpain
  2. 2.CECIUniversité de Toulouse, CNRS, CerfacsToulouseFrance
  3. 3.UMR CNRS 5805 EPOC-OASU-Université de BordeauxPessacFrance
  4. 4.ICREABarcelonaSpain

Personalised recommendations