Origin of the warm eastern tropical Atlantic SST bias in a climate model

  • E. Exarchou
  • C. Prodhomme
  • L. Brodeau
  • V. Guemas
  • F. Doblas-Reyes
Article

Abstract

The substantial warm sea surface temperature bias in the eastern Tropical Atlantic reported in most CMIP5 climate simulations with various models, in particular along the coast of Namibia and Angola, remains an issue in more recent and CMIP6-ready versions of climate models such as EC-Earth. A complete and original set of experiments with EC-Earth3.1 is performed to investigate the causes and mechanisms responsible for the emergence and persistence of this bias. The fully-developed bias is studied in a historical experiment that has reached quasi-equilibrium, while retrospective prediction experiments are used to highlight the development/growth from an observed initial state. Prediction experiments are performed at both low and high resolution to assess the possible dependence of the bias on horizontal resolution. Standalone experiments with the ocean and the atmosphere components of EC-Earth are also analyzed to separate the respective contributions of the ocean and atmosphere to the development of the bias. EC-Earth3.1 exhibits a bias similar to that reported in most climate models that took part in CMIP5. The magnitude of this bias, however, is weaker than most CMIP5 models by few degrees. Increased horizontal resolution only leads to a minor reduction of the bias in EC-Earth. The warm SST bias is found to be the result of an excessive solar absorption in the ocean mixed layer, which can be linked to the excessive solar insolation due to unrealistically low cloud cover, and the absence of spatial and temporal variability of the biological productivity in the ocean component. The warm SST bias is further linked to deficient turbulent vertical mixing of cold water to the mixed layer. Our study points at a need for better representation of clouds in the vicinity of eastern boundaries in atmosphere models, and better representation of solar penetration and turbulent mixing in the ocean models in order to eliminate the Tropical Atlantic biases.

Keywords

Seasonal prediction Tropical Atlantic Model biases Global climate models 

Supplementary material

382_2017_3984_MOESM1_ESM.pdf (70 kb)
Figure S1: Forecast biases in the four components of the area-averaged surface heat fluxes over the CAB region (positive is downwards, units are W/m2) for the LR-Hind experiment with respect to TropFlux. Sensible heat fluxes are shown in green, latent in blue, longwave in brown, shortwave in red, and net heat fluxes in black, for the the summer months (May-August) in the top row and winter months (November-February) in the bottom row. The grey line is the SST bias (with respect to ERAi), and its values are shown in the right Y axis, in °C. The biases are calculated as the difference between LR-Hind and the reference dataset (TropFlux or ERAi) in their time mean data over 17 years (1993-2009) for each day in May (left) and November (right) (PDF 69 KB)
382_2017_3984_MOESM2_ESM.pdf (84 kb)
Figure S2: Climatological meridional surface wind speed vas (in m/s, time averages between 1999-2009), and zonally averaged between 25°S-5°S, for DFS4.3 and QuikSCAT (PDF 84 KB)
382_2017_3984_MOESM3_ESM.pdf (68 kb)
Figure S3: Forecast biases in the four components of the meridionally averaged (between 18°S-5°S) surface heat fluxes (positive is downwards, units are W/m2) for the LR-Hind experiment with respect to OAFlux (as in Fig 15) (PDF 68 KB)

References

  1. Axell LB (2002) Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic sea. J Geophys Res Oceans 107(C11):3204. https://doi.org/10.1029/2001JC000922 CrossRefGoogle Scholar
  2. Balmaseda M et al (2009) Ocean initialization for seasonal forecasts. Oceanography 22(3):154–159. http://www.researchgate.net/publication/45404088_Ocean_Initialization_for_Seasonal_Forecasts/file/79e41506a3470981d1.pdf
  3. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139(674):1132–1161. https://doi.org/10.1002/qj.2063 CrossRefGoogle Scholar
  4. Beckmann A, Döscher R (1997) A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J Phys Oceanogr 27:581–591. https://doi.org/10.1175/1520-0485(1997)027<0581:AMFIRO>2.0.CO;2 CrossRefGoogle Scholar
  5. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23:1363–1388. https://doi.org/10.1175/1520-0485(1993)023<1363:vottao>2.0.co;2
  6. Bouillon S, Maqueda MAM, Legat V, Fichefet T (2009) Sea ice model formulated on Arakawa B and C grids. Ocean Model 27:174–184CrossRefGoogle Scholar
  7. Brierley CM, Collins M, Thorpe AJ (2008) The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model. Clim Dyn 34(2–3):325–343. https://doi.org/10.1007/s00382-008-0486-3 Google Scholar
  8. Brodeau L, Barnier B, Treguier A-M, Penduff T, Gulev S (2010) An era40-based atmospheric forcing for global ocean circulation models. Ocean Model 31(3):88–104CrossRefGoogle Scholar
  9. Caron L-P, Jones CG, Doblas-Reyes F (2014) Multi-year prediction skill of Atlantic hurricane activity in CMIP5 decadal hindcasts. Clim Dyn 42(9–10):2675–2690CrossRefGoogle Scholar
  10. Carslaw KS et al (2013) Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503(7474):67–71. https://doi.org/10.1038/nature12674 CrossRefGoogle Scholar
  11. Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136(8):2999–3017CrossRefGoogle Scholar
  12. Chowdary JS, Parekh A, Ojha S, Gnanaseelan C, Kakatkar R (2016) Impact of upper ocean processes and air-sea fluxes on seasonal SST biases over the tropical Indian Ocean in the NCEP Climate Forecasting System. Int J Climatol 36(1):188–207. https://doi.org/10.1002/joc.4336 CrossRefGoogle Scholar
  13. Christian JR, Murtugudde R (2003) Tropical Atlantic variability in a coupled physical–biogeochemical ocean model. Deep Sea Res Part II 50(22):2947–2969CrossRefGoogle Scholar
  14. Colas F, McWilliams JC, Capet X, Kurian J (2012) Heat balance and eddies in the Peru-Chile current system. Clim Dyn 39(1–2):509–529CrossRefGoogle Scholar
  15. Crane TA, Roncoli C, Paz J, Breuer N, Broad K, Ingram KT, Hoogenboom G (2010) Forecast skill and farmers’ skills: seasonal climate forecasts and agricultural risk management in the Southeastern US. Weather Clim Soc 2(1):44–59. https://doi.org/10.1175/2009WCAS1006.1 CrossRefGoogle Scholar
  16. D’Asaro EA (1985) The energy flux from the wind to near-inertial motions in the surface mixed layer. J Phys Oceanogr 15(8):1043–1059CrossRefGoogle Scholar
  17. De Felice M, Alessandri A, Catalano F (2015) Seasonal climate forecasts for medium-term electricity demand forecasting. Appl Energy 137:435–444. https://doi.org/10.1016/j.apenergy.2014.10.030 CrossRefGoogle Scholar
  18. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656): 553–597. http://centaur.reading.ac.uk/24937/
  19. Deser C, Alexander MA, Timlin MS (2003) Understanding the persistence of sea surface temperature anomalies in midlatitudes. J Clim 16(1):57–72CrossRefGoogle Scholar
  20. Doblas-Reyes F, Hagedorn R, Palmer T (2006) Developments in dynamical seasonal forecasting relevant to agricultural management. Clim Res 33(1):19CrossRefGoogle Scholar
  21. Doblas-Reyes FJ, García-Serrano J, Lienert F, Biescas AP, Rodrigues LRL (2013a) Seasonal climate predictability and forecasting: status and prospects. Wiley Interdiscip Rev Clim Change 4(4):245–268. https://doi.org/10.1002/wcc.217 CrossRefGoogle Scholar
  22. Doblas-Reyes FJ et al (2013b) Initialized near-term regional climate change prediction. Nat Commun 4:1715. https://doi.org/10.1038/ncomms2704. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3644073&tool=pmcentrez&rendertype=abstract
  23. Du H, Doblas-Reyes FJ, García-Serrano J, Guemas V, Soufflet Y, Wouters B (2012) Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Clim Dyn 39(7):2013–2023. https://doi.org/10.1007/s00382-011-1285-9 CrossRefGoogle Scholar
  24. Emanuel K, Fondriest F, Kossin J (2012) Potential economic value of seasonal hurricane forecasts. Weather Clim Soc 4(2):110–117CrossRefGoogle Scholar
  25. Ferry N, Parent L, Garric G, Barnier B, Jourdain NC (2010) Mercator global eddy permitting ocean reanalysis GLORYS1V1: description and results. Mercator Ocean Q Newsl 36:15–27Google Scholar
  26. Fichefet T, Maqueda M (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res Oceans (1978–2012) 102(C6):12 609–12 646CrossRefGoogle Scholar
  27. Forbes RM, Tompkins AM, Untch A (2011) A new prognastic bulk microphysics scheme for the IFS. European Centre for Medium-Range Weather ForecastsGoogle Scholar
  28. Garcia-Morales MB, Dubus L (2007) Forecasting precipitation for hydroelectric power management: how to exploit GCM’s seasonal ensemble forecasts. Int J Climatol 27(12):1691. https://doi.org/10.1002/joc.1608 CrossRefGoogle Scholar
  29. García-Serrano J, Doblas-Reyes F, Haarsma R, Polo I (2013) Decadal prediction of the dominant west African monsoon rainfall modes. J Geophys Res Atmos 118(11):5260–5279CrossRefGoogle Scholar
  30. Garrett C (2001) What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J Phys Oceanogr 31(4):962–971CrossRefGoogle Scholar
  31. Gaspar P, Grégoris Y, Lefevre J-M (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station papa and long-term upper ocean study site. J Geophys Res Oceans 95(C9):16 179–16 193CrossRefGoogle Scholar
  32. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155. https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2 CrossRefGoogle Scholar
  33. Giordani H, Caniaux G, Voldoire A (2013) Intraseasonal mixed-layer heat budget in the equatorial Atlantic during the cold tongue development in 2006. J Geophys Res Oceans 118(2):650–671CrossRefGoogle Scholar
  34. Grodsky SA, Carton JA, Nigam S, Okumura YM (2012) Tropical Atlantic biases in CCSM4. J Clim 25(11):3684–3701CrossRefGoogle Scholar
  35. Haman KE, Malinowski SP, Kurowski MJ, Gerber H, Brenguier J-L (2007) Small scale mixing processes at the top of a marine stratocumulus—a case study. Q J R Meteorol Soc 133(622):213–226CrossRefGoogle Scholar
  36. Hastenrath S, Lamb P (1978) On the dynamics and climatology of surface flow over the equatorial oceans. Tellus 30(5):436–448CrossRefGoogle Scholar
  37. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107. https://doi.org/10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  38. Hazeleger W, Haarsma RJ (2005) Sensitivity of tropical Atlantic climate to mixing in a coupled ocean–atmosphere model. Clim Dyn 25(4):387–399CrossRefGoogle Scholar
  39. Hazeleger W et al (2012) EC-earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39(11):2611–2629CrossRefGoogle Scholar
  40. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  41. Hieronymus M, Nycander J (2013) The budgets of heat and salinity in NEMO. Ocean Modell 67:28–38. https://doi.org/10.1016/j.ocemod.2013.03.006. http://linkinghub.elsevier.com/retrieve/pii/S1463500313000462
  42. Hourdin F et al (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40(9–10):2167–2192CrossRefGoogle Scholar
  43. Huang B, Hu Z-Z, Jha B (2007) Evolution of model systematic errors in the tropical Atlantic basin from coupled climate hindcasts. Clim Dyn 28(7–8):661–682CrossRefGoogle Scholar
  44. Huang B, Stone PH, Sokolov AP, Kamenkovich IV (2003) Ocean heat uptake in transient climate change: mechanisms and uncertainty due to subgrid-scale eddy mixing. J Clim 16(20):3344–3356CrossRefGoogle Scholar
  45. Jarre A et al (2015) Synthesis: climate effects on biodiversity, abundance and distribution of marine organisms in the Benguela. Fish Oceanogr 24(S1):122–149. https://doi.org/10.1111/fog.12086 CrossRefGoogle Scholar
  46. Jewson S et al (2008) Five year prediction of the number of hurricanes which make United States landfall. Hurric Clim Change:73–99. https://doi.org/10.1007/978-0-387-09410-6_5
  47. Jouanno J, Marin F, Du Penhoat Y, Sheinbaum J, Molines J-M (2011) Seasonal heat balance in the upper 100 m of the equatorial Atlantic ocean. J Geophys Res Oceans 116:C09003. https://doi.org/10.1029/2010JC006912 CrossRefGoogle Scholar
  48. Jung T et al (2012) High-resolution global climate simulations with the ECMWF model in project athena: experimental design, model climate, and seasonal forecast skill. J Clim 25(9):3155–3172. https://doi.org/10.1175/JCLI-D-11-00265.1 CrossRefGoogle Scholar
  49. Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40(10):2278–2283. https://doi.org/10.1002/grl.50362 CrossRefGoogle Scholar
  50. Knutti R, Meehl GA, Allen MR, Stainforth DA (2006) Constraining climate sensitivity from the seasonal cycle in surface temperature. J Clim 19(17):4224–4233CrossRefGoogle Scholar
  51. Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35(4):1–5. https://doi.org/10.1029/2007GL033037 CrossRefGoogle Scholar
  52. Kumar BP, Vialard J, Lengaigne M, Murty V, McPhaden M (2012) Tropflux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38(7–8):1521–1543CrossRefGoogle Scholar
  53. Large W, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19(11):2325–2346CrossRefGoogle Scholar
  54. Lass H, Schmidt M, Mohrholz V, Nausch G (2000) Hydrographic and current measurements in the area of the Angola–Benguela front. J Phys Oceanogr 30(10):2589–2609CrossRefGoogle Scholar
  55. Ledwell J, Montgomery E, Polzin K, St. Laurent LC, R. Schmitt, Toole J (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403(6766):179–82. https://doi.org/10.1038/35003164. http://www.ncbi.nlm.nih.gov/pubmed/10646599
  56. Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, André J-M, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28(5):503–516CrossRefGoogle Scholar
  57. Lenschow DH, Zhou M, Zeng X, Chen L, Xu X (2000) Measurements of fine-scale structure at the top of marine stratocumulus. Bound Layer Meteorol 97(2):331–357CrossRefGoogle Scholar
  58. Lindborg E, Brethouwer G (2008) Vertical dispersion by stratified turbulence. J Fluid Mech 614:303–314CrossRefGoogle Scholar
  59. Ma H-Y et al (2014) On the correspondence between mean forecast errors and climate errors in CMIP5 models. J Clim 27(4):1781–1798CrossRefGoogle Scholar
  60. Maclachlan C et al (2014) Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2396 Google Scholar
  61. Madec G (2008) Nemo ocean engine, Note du Pole de modelisation, Vol 27. Institut Pierre-Simon Laplace (IPSL), France, pp 1288–1619Google Scholar
  62. Manabe S, Stouffer RJ (1996) Low-frequency variability of surface air temperature in a 1000-year integration of a coupled atmosphere–ocean–land surface model. J Clim 9(2):376–393CrossRefGoogle Scholar
  63. Mellor G, Blumberg A (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34(3):693–698CrossRefGoogle Scholar
  64. Merchant CJ et al (2014) Sea surface temperature datasets for climate applications from phase 1 of the European space agency climate change initiative (SST CCI). Geosci Data J 1(2):179–191CrossRefGoogle Scholar
  65. Monger B, McClain C, Murtugudde R (1997) Seasonal phytoplankton dynamics in the eastern tropical Atlantic. J Geophys Res Oceans 102(C6):12 389–12 411CrossRefGoogle Scholar
  66. Morcrette J, Barker H, Cole J, Iacono M, Pincus R (2008) Impact of a new radiation package, MCRAD, in the ECMWF integrated forecasting system. Mon Weather Rev 136(12):4773–4798CrossRefGoogle Scholar
  67. Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (case i waters). J Geophys Res 93(10):749–810Google Scholar
  68. Moum JN, Caldwell DR, Paulson CA (1989) Mixing in the equatorial surface layer and thermocline. J Geophys Res Oceans 94(C2):2005–2022CrossRefGoogle Scholar
  69. Murtugudde R, Beauchamp J, McClain CR, Lewis M, Busalacchi AJ (2002) Effects of penetrative radiation on the upper tropical ocean circulation. J Clim 15(5):470–486CrossRefGoogle Scholar
  70. Nash JD, Kunze E, Toole JM, Schmitt RW (2004) Internal tide reflection and turbulent mixing on the continental slope. J Phys Oceanogr 34(5):1117–1134CrossRefGoogle Scholar
  71. Patricola CM, Li M, Xu Z, Chang P, Saravanan R, Hsieh J-S (2012) An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model. Clim Dyn 39(9–10):2443–2463CrossRefGoogle Scholar
  72. Peterson RG, Stramma L (1991) Upper-level circulation in the south Atlantic ocean. Prog Oceanogr 26(1):1–73CrossRefGoogle Scholar
  73. Planton Y (2015) Sources de la variabilité interannuelle de la langue d’eau froide Atlantique. Ph.D. thesis, Université Toulouse III Paul SabatierGoogle Scholar
  74. Polzin KL, Firing E (1997) Estimates of diapycnal mixing using LADCP and CTD data from I8S. Int WOCE Newsl 29:39–42Google Scholar
  75. Prodhomme C, Doblas-Reyes F, Bellprat O, Dutra E (2015) Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Clim Dyn. https://doi.org/10.1007/s00382-015-2879-4 Google Scholar
  76. Qu X, Hall A, Klein SA, Caldwell PM (2014) On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Clim Dyn 42(9–10):2603–2626CrossRefGoogle Scholar
  77. Rayner NA (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  78. Richter I (2015) Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. Wiley Interdiscip Rev Clim Change 6(3):345–358. https://doi.org/10.1002/wcc.338 CrossRefGoogle Scholar
  79. Richter I, Xie SP (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31(5):587–598. https://doi.org/10.1007/s00382-008-0364-z CrossRefGoogle Scholar
  80. Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of quikscat scatterometer data. J Phys Oceanogr 38(11):2379–2413CrossRefGoogle Scholar
  81. Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36(20):L20–L705. https://doi.org/10.1029/2009GL040048 CrossRefGoogle Scholar
  82. Roehrig R, Bouniol D, Guichard F, Hourdin FD, Redelsperger J-LL (2013) The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26:6471–6505. https://doi.org/10.1175/JCLI-D-12-00505.1. http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00505.1
  83. Rossow WB, Commission IO et al (1996) International Satellite Cloud Climatology Project (ISCCP): documentation of new cloud datasets. NASA Goddard Space Flight CenterGoogle Scholar
  84. Sakamoto TT et al (2012) MIROC4h—a new high-resolution atmosphere–ocean coupled general circulation model. J Meteorol Soc Jpn 90(3):325–359. https://doi.org/10.2151/jmsj.2012-301 CrossRefGoogle Scholar
  85. Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and el nino-southern oscillation. J Clim 13(13):2177–2194CrossRefGoogle Scholar
  86. Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Ocean 6:379–389CrossRefGoogle Scholar
  87. Sherwood SC, Bony S, Dufresne J-L (2014) Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505(7481):37–42CrossRefGoogle Scholar
  88. Small RJ, Curchitser E, Hedstrom K, Kauffman B, Large WG (2015) The benguela upwelling system: quantifying the sensitivity to resolution and coastal wind representation in a global climate model*. J Clim 28(23):9409–9432CrossRefGoogle Scholar
  89. Song Z, Lee S-K, Wang C, Kirtman BP, Qiao F (2015) Contributions of the atmosphere–land and ocean–sea ice model components to the tropical Atlantic SST bias in CESM1. Ocean Model 96:280–290CrossRefGoogle Scholar
  90. Soret A, Gonzalez N, Torralba V, Cortesi N, Turco M, Doublas-Reyes FJ (2016) Climate predictions for vineyard management (April 10–13, 2016, burdeaux, france)Google Scholar
  91. Stainforth DA, et al (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433(7024):403–6. https://doi.org/10.1038/nature03301. http://www.ncbi.nlm.nih.gov/pubmed/15674288
  92. Sterl A et al (2012) A look at the ocean in the EC-Earth climate model. Clim Dyn 39:2631–2657. https://doi.org/10.1007/s00382-011-1239-2 CrossRefGoogle Scholar
  93. Stevens B et al (2005) Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon Weather Rev 133(6):1443–1462CrossRefGoogle Scholar
  94. Sultan B, Baron C, Dingkuhn M, Sarr B, Janicot S (2005) Agricultural impacts of large-scale variability of the West African monsoon. Agric For Meteorol 128(1–2):93–110. https://doi.org/10.1016/j.agrformet.2004.08.005 CrossRefGoogle Scholar
  95. Terray P, Masson S, Prodhomme C, Roxy MK, Sooraj KP (2015) Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn. https://doi.org/10.1007/s00382-015-2715-x
  96. Tompkins AM, di Giuseppe F (2015) Potential predictability of malaria in Africa using ECMWF monthly and seasonal climate forecasts. J Appl Meteorol Climatol 54(3):521–540. https://doi.org/10.1175/JAMC-D-14-0156.1 CrossRefGoogle Scholar
  97. Toniazzo T, Woolnough S (2013) Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Clim Dyn. https://doi.org/10.1007/s00382-013-1691-2 Google Scholar
  98. Toole JM, Schmitt RW, Polzin KL (1994) Estimates of diapycnal mixing in the abyssal ocean. Science (New York, N.Y.) 264(5162):1120–3. https://doi.org/10.1126/science.264.5162.1120. http://www.ncbi.nlm.nih.gov/pubmed/17744895
  99. Umlauf L, Burchard H (2003) A generic length-scale equation for geophysical turbulence models. J Mar Res 61(2):235–265. https://doi.org/10.1357/002224003322005087 CrossRefGoogle Scholar
  100. Valcke S (2006) Oasis3 user guide (prism_2-5). PRISM support initiative report 3, p 64Google Scholar
  101. Vannière B, Guilyardi E, Madec G, Doblas-Reyes FJ, Woolnough S (2013) Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Clim Dyn 40(3–4):963–981. https://doi.org/10.1007/s00382-012-1429-6 CrossRefGoogle Scholar
  102. Vannière B, Guilyardi E, Toniazzo T, Madec G, Woolnough S (2014) A systematic approach to identify the sources of tropical SST errors in coupled models using the adjustment of initialised experiments. Clim Dyn 43(7–8):2261–2282. https://doi.org/10.1007/s00382-014-2051-6 CrossRefGoogle Scholar
  103. Voldoire A, Claudon M, Caniaux G, Giordani H, Roehrig R (2014) Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model? Clim Dyn 43(11):2963–2984. https://doi.org/10.1007/s00382-013-2036-x CrossRefGoogle Scholar
  104. Wahl S, Latif M, Park W, Keenlyside N (2011) On the tropical Atlantic SST warm bias in the kiel climate model. Clim Dyn 36(5–6):891–906CrossRefGoogle Scholar
  105. Waliser DE, Gautier C (1993) A satellite-derived climatology of the ITCZ. J Clim 6(11):2162–2174CrossRefGoogle Scholar
  106. Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4(3):201–205CrossRefGoogle Scholar
  107. Weingartner TJ, Weisberg RH (1991) On the annual cycle of equatorial upwelling in the central Atlantic ocean. J Phys Oceanogr 21(1):68–82CrossRefGoogle Scholar
  108. Wyant M, Bretherton C, Bacmeister J, Kiehl J, Held I, Zhao M, Klein S, Soden B (2006) A comparison of tropical cloud properties and responses in gcms using mid-tropospheric vertical velocity. Climate Dyn 27:261–279CrossRefGoogle Scholar
  109. Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. Earth’s Clim:121–142Google Scholar
  110. Xu Z, Chang P, Richter I, Tang G (2014a) Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble. Clim Dyn 43(11):3123–3145CrossRefGoogle Scholar
  111. Xu Z, Li M, Patricola CM, Chang P (2014b) Oceanic origin of southeast tropical Atlantic biases. Clim Dyn 43(11):2915–2930CrossRefGoogle Scholar
  112. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01. 74Google Scholar
  113. Zhang M et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res Atmos 110:D15S02Google Scholar
  114. Zhang S (2011) A study of impacts of coupled model initial shocks and state-parameter optimization on climate predictions using a simple pycnocline prediction model. J Clim 24(23):6210–6226CrossRefGoogle Scholar
  115. Zheng Y, Shinoda T, Lin J-L, Kiladis GN (2011) Sea surface temperature biases under the stratus cloud deck in the southeast pacific ocean in 19 iPCC AR4 coupled general circulation models. J Clim 24(15):4139–4164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Barcelona Supercomputing Center (BSC), Earth SciencesBarcelonaSpain
  2. 2.Centre National de Recherche Meteorologique, Meteo-FranceToulouseFrance
  3. 3.ICREA, Pg. Lluís Companys 23BarcelonaSpain

Personalised recommendations