Climate Dynamics

, Volume 51, Issue 5–6, pp 1733–1751 | Cite as

Climate response to the meltwater runoff from Greenland ice sheet: evolving sensitivity to discharging locations

  • Yonggang LiuEmail author
  • Robert Hallberg
  • Olga Sergienko
  • Bonnie L. Samuels
  • Matthew Harrison
  • Michael Oppenheimer


Greenland Ice Sheet (GIS) might have lost a large amount of its volume during the last interglacial and may do so again in the future due to climate warming. In this study, we test whether the climate response to the glacial meltwater is sensitive to its discharging location. Two fully coupled atmosphere–ocean general circulation models, CM2G and CM2M, which have completely different ocean components are employed to do the test. In each experiment, a prescribed freshwater flux of 0.1 Sv is discharged from one of the four locations around Greenland—Petermann, 79 North, Jacobshavn and Helheim glaciers. The results from both models show that the AMOC weakens more when the freshwater is discharged from the northern GIS (Petermann and 79 North) than when it is discharged from the southern GIS (Jacobshavn and Helheim), by 15% (CM2G) and 31% (CM2M) averaged over model year 50–300 (CM2G) and 70–300 (CM2M), respectively. This is due to easier access of the freshwater from northern GIS to the deepwater formation site in the Nordic Seas. In the long term (> 300 year), however, the AMOC change is nearly the same for freshwater discharged from any location of the GIS. The East Greenland current accelerates with time and eventually becomes significantly faster when the freshwater is discharged from the north than from the south. Therefore, freshwater from the north is transported efficiently towards the south first and then circulates back to the Nordic Seas, making its impact to the deepwater formation there similar to the freshwater discharged from the south. The results indicate that the details of the location of meltwater discharge matter if the short-term (< 300 years) climate response is concerned, but may not be critical if the long-term (> 300 years) climate response is focused upon.


Climate change Atlantic meridional ocean circulation (AMOC) Greenland ice sheet Freshwater forcing Hosing experiment 



The authors are grateful to the comments on the manuscript by Ron Stouffer and Rong Zhang, and the discussion with John Lazante, and Liping Zhang at GFDL and Kun Wang at Peking University. Y. Liu is supported by the National Key R&D Program of China 2017YFA0603801 and Chinese National Natural Science Foundation grant 41630527. OVS is supported by NOAA grant NA13OAR43100.


  1. Aharon P (2003) Meltwater flooding events in the Gulf of Mexico revisited: Implications for rapid climate changes during the last deglaciation Paleoceanography 18Google Scholar
  2. Bakker P et al (2016) Fate of the Atlantic meridional overturning circulation: strong decline under continued warming and Greenland melting. Geophys Res Lett 43:2016GL070457. doi: 10.1002/2016GL070457 Google Scholar
  3. Born A, Nisancioglu KH (2012) Melting of Northern Greenland during the last interglaciation. Cryosphere 6:1239–1250. doi: 10.5194/Tc-6-1239-2012 CrossRefGoogle Scholar
  4. Cheng W, Chiang JCH, Zhang DX (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical. Simul J Clim 26:7187–7197CrossRefGoogle Scholar
  5. Condron A, Winsor P (2011) A subtropical fate awaited freshwater discharged from glacial Lake Agassiz. Geophys Res Lett 38:L03705. doi: 10.1029/2010gl046011 CrossRefGoogle Scholar
  6. Condron A, Winsor P (2012) Meltwater routing and the Younger Dryas. P Natl Acad Sci USA 109:19928–19933. doi: 10.1073/Pnas.1207381109 CrossRefGoogle Scholar
  7. Dickson RR, Meincke J, Malmberg SA, Lee AJ (1988) The Great Salinity Anomaly in the Northern North-Atlantic 1968–1982. Prog Oceanogr 20:103–151. doi: 10.1016/0079-6611(88)90049-3 CrossRefGoogle Scholar
  8. Dunne JP et al (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation. Char J Clim 25:6646–6665. doi: 10.1175/Jcli-D-11-00560.1 CrossRefGoogle Scholar
  9. Dunne JP et al (2013) GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation. Char J Clim 26:2247–2267CrossRefGoogle Scholar
  10. Frajka-Williams E et al (2016) Compensation between meridional flow components of the Atlantic MOC at 26 degrees. N Ocean Sci 12:481–493CrossRefGoogle Scholar
  11. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate. Model Nat 409:153–158. doi: 10.1038/35051500 Google Scholar
  12. Gelderloos R, Straneo F, Katsman CA (2012) Mechanisms behind the temporary shutdown of deep convection in the labrador sea: lessons from the great salinity anomaly years 1968. J Clim 25(71):6743–6755. doi: 10.1175/Jcli-D-11-00549.1 CrossRefGoogle Scholar
  13. Gerdes R, Hurlin W, Griffies SM (2006) Sensitivity of a global ocean model to increased run-off from. Greenland Ocean Model 12:416–435. doi: 10.1016/J.Ocemod.2005.08.003 CrossRefGoogle Scholar
  14. Griffies SM (2007) Elements of MOM4p1. NOAA/geophysical fluid dynamics laboratory. PrincetonGoogle Scholar
  15. Hallberg R, Adcroft A (2009) Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Model 29:15–26. doi: 10.1016/J.Ocemod.2009.02.008 CrossRefGoogle Scholar
  16. Hanna E, Cropper TE, Hall RJ, Cappelen J (2016) Greenland Blocking Index 1851–2015: a regional climate change signal: Greenland Blocking Index 1851–2015. Int J Climatol. doi: 10.1002/joc.4673 Google Scholar
  17. Hu AX, Meehl GA, Han WQ, Yin JJ (2011) Effect of the potential melting of the Greenland Ice Sheet on the Meridional Overturning Circulation and global climate in the future deep-sea. Res Pt Ii 58:1914–1926. doi: 10.1016/J.Dsr2.2010.10.069 Google Scholar
  18. Hu AX, Meehl GA, Han WQ, Yin JJ, Wu BY, Kimoto M (2013) Influence of Continental Ice Retreat on Future Global. Climate J Climate 26:3087–3111 doi:Doi.  10.1175/Jcli-D-12-00102.1 CrossRefGoogle Scholar
  19. Joughin I, Smith B, Howat IM, Scambos T, Moon T (2010a) MEaSUREs Greenland ice velocity map from InSAR data. Boulder, Colorado, USA. doi: 10.5067/MEASURES/CRYOSPHERE/nsidc-0478.001
  20. Joughin I, Smith BE, Howat IM, Scambos T, Moon T (2010b) Greenland flow variability from ice-sheet-wide velocity mapping. J Glaciol 56:415–430CrossRefGoogle Scholar
  21. Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33:L17708. doi: 10.1029/2006gl026815 CrossRefGoogle Scholar
  22. Kageyama M, Paul A, Roche DM, Van Meerbeeck CJ (2010) Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review. Quat Sci Rev 29:2931–2956. doi: 10.1016/J.Quascirev.2010.05.029 CrossRefGoogle Scholar
  23. Khan SA et al (2014) Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat Clim Change 4:292–299. doi: 10.1038/nclimate2161 CrossRefGoogle Scholar
  24. Kleinen T, Osborn TJ, Briffa KR (2009) Sensitivity of climate response to variations in freshwater hosing location. Ocean Dyn 59:509–521. doi: 10.1007/S10236-009-0189-2 CrossRefGoogle Scholar
  25. Licciardi JM, Teller JT, Clark PU (1999) Freshwater routing by the Laurentide ice sheet during the last deglaciation. Geophys Monograph 112:177–201Google Scholar
  26. Liu Z et al (2009) Transient simulation of last deglaciation with a new mechanism for. Bolling-Allerod Warm Sci 325:310–314Google Scholar
  27. Liu JP, Chen ZQ, Francis J, Song MR, Mote T, Hu YY (2016) Has Arctic Sea ice loss contributed to increased surface melting of the greenland ice sheet? J Clim 29:3373–3386CrossRefGoogle Scholar
  28. Liu W, Xie S-P, Liu Z, Zhu J (2017) Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming. Clim Sci Adv 3:e1601666. doi: 10.1126/sciadv.1601666 CrossRefGoogle Scholar
  29. Manabe S, Stouffer RJ (1995) Simulation of abrupt climate-change induced by fresh-water input to the north-atlantic. Ocean Nat 378:165–167. doi: 10.1038/378165a0 Google Scholar
  30. Martin T, Adcroft A (2010) Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Model 34:111–124CrossRefGoogle Scholar
  31. Mouginot J et al (2015) Fast retreat of Zachariae Isstrom. Northeast Greenland Sci 350:1357–1361Google Scholar
  32. Quiquet A, Ritz C, Punge HJ, Salas y Mélia D (2013) Greenland ice sheet contribution to sea level rise during the last interglacial period: a modelling study driven and constrained by ice core data. Clim Past 9:353–366. doi: 10.5194/cp-9-353-2013 CrossRefGoogle Scholar
  33. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise Geophys Res Lett 38:L05503. doi: 10.1029/2011gl046583
  34. Roche DM, Wiersma AP, Renssen H (2010) A systematic study of the impact of freshwater pulses with respect to different geographical locations. Clim Dyn 34:997–1013. doi: 10.1007/S00382-009-0578-8 CrossRefGoogle Scholar
  35. Rogozhina I et al (2016) Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nat Geosci 9:366CrossRefGoogle Scholar
  36. Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res-Oceans 113:C06022. doi: 10.1029/2006jc004079 CrossRefGoogle Scholar
  37. Stammer D, Agarwal N, Herrmann P, Kohl A, Mechoso CR (2011) Response of a coupled ocean–atmosphere model to greenland ice. Melting Surv Geophys 32:621–642. doi: 10.1007/s10712-011-9142-2 CrossRefGoogle Scholar
  38. Stone EJ, Lunt DJ, Annan JD, Hargreaves JC (2013) Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Clim Past 9:621–639. doi: 10.5194/cp-9-621-2013 CrossRefGoogle Scholar
  39. Stouffer RJ et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387. doi: 10.1175/Jcli3689.1 CrossRefGoogle Scholar
  40. Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33:L07711. doi: 10.1029/2006gl025765 CrossRefGoogle Scholar
  41. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2xCO(2) stabilization experiment with land-ice melting. Clim Dyn 29:521–534. doi: 10.1007/S00382-007-0250-0 CrossRefGoogle Scholar
  42. Swingedouw D et al (2013) Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim Dyn 41:695–720CrossRefGoogle Scholar
  43. Swingedouw D, Rodehacke CB, Olsen SM, Menary M, Gao YQ, Mikolajewicz U, Mignot J (2015) On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: a multi-model assessment. Clim Dyn 44:3261–3279CrossRefGoogle Scholar
  44. Tarasov L, Peltier WR (2005) Arctic freshwater forcing of the Younger Dryas. Cold Reversal Nat 435:662–665. doi: 10.1038/Nature03617 Google Scholar
  45. Tedesco M et al. (2016) Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat Commun 7Google Scholar
  46. Thiebaux HJ, Zwiers FW (1984) The interpretation and estimation of effective sample-size. J Clim Appl Meteorol 23:800–811. doi: 10.1175/1520-0450(1984)023<0800:Tiaeoe>2.0.Co;2 CrossRefGoogle Scholar
  47. Thomas MD, Treguier AM, Blanke B, Deshayes J, Voldoire A (2015) A Lagrangian method to isolate the impacts of mixed layer subduction on the meridional overturning circulation in a numerical. Model J Clim 28:7503–7517CrossRefGoogle Scholar
  48. Vizcaino M, Mikolajewicz U, Groger M, Maier-Reimer E, Schurgers G, Winguth AME (2008) Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex. Earth System Model Clim Dyn 31:665–690. doi: 10.1007/S00382-008-0369-7 Google Scholar
  49. Yang Q et al. (2016) Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation (vol 7, p 10525) Nat Commun 7Google Scholar
  50. Yu L, Gao YQ, Ottera OH (2016) The sensitivity of the Atlantic meridional overturning circulation to enhanced freshwater discharge along the entire, eastern and western coast of. Greenland Clim Dyn 46:1351–1369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniveristyBeijingChina
  2. 2.NOAA Geophysical Fluid Dynamics Laboratory, Ocean GroupPrincetonUSA
  3. 3.Program in Atmospheric and Oceanic SciencesPrinceton UniversityPrincetonUSA
  4. 4.Woodrow Wilson School of Public and International AffairsPrinceton UniversityPrincetonUSA
  5. 5.Department of GeosciencesPrinceton UniversityPrincetonUSA

Personalised recommendations