Climate Dynamics

, Volume 51, Issue 4, pp 1465–1483 | Cite as

Why rainfall response to El Niño over Maritime Continent is weaker and non-uniform in boreal winter than in boreal summer

  • Leishan Jiang
  • Tim Li


Why rainfall response to El Niño is uniform and stronger over the Maritime Continent (MC) during El Niño developing summer and fall but is weaker and non-uniform during El Niño mature winter is investigated through the diagnosis of anomalous large-scale circulation patterns and a local moisture budget analysis. It is found that when anomalous Walker cells across the equatorial Pacific and Indian Ocean are strengthened toward El Niño mature winter, a low-level ascending motion anomaly starts to develop over western MC in northern fall due to topographic lifting (near Sumatra) and anomalous wind convergence (near west Kalimantan). Easterly anomalies, as a part of an anomalous anticyclone in South China Sea (SCS) that is developed during El Niño and a part of the south-easterly from Java Sea associated with anomalous Walker Circulation, bump into the mountain ridge of Sumatra and induce ascending motion anomalies near Sumatra. Meanwhile, the anomalous north-easterly in the southern flank of the anomalous anticyclone over SCS and south-easterly over Java Sea converge into west Kalimantan, leading to ascending motion there. The anomalous ascending motion tend to advect mean moisture upward to moisten lower troposphere in situ. This low-level moistening eventually sets up a convectively unstable stratification and induces a positive precipitation anomaly in the western MC. How the mechanism discussed here is relevant to previous hypotheses and how processes during El Niño might differ during La Niña are discussed.


El Niño Maritime Continent Rainfall Topographic lifting 



This work was supported by NSFC project 41630423, National Key R&D Program 2017YFA0603802 and 2015CB453200, NSF AGS-1565653, Jiangsu project BK20150062, Jiangsu Shuang-Chuang Team (R2014SCT001) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). This is SOEST contribution number 1234, IPRC contribution number 1234, and ESMC contribution 123.


  1. Adler RF, Huffman GJ, Chang A et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
  2. Chang C-P, Zhang Y, Li T (2000a) Interannual and interdecadal variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: roles of the subtropical ridge. J Clim 13:4310–4325. doi: 10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2
  3. Chang C-P, Zhang Y, Li T (2000b) Interannual and interdecadal variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part II: meridional structure of the monsoon. J Clim 13:4326–4340. doi: 10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2
  4. Chang C-P, Wang Z, Ju J, Li T (2004) On the Relationship between Western Maritime Continent Monsoon rainfall and ENSO during Northern Winter. J Clim 17:665–672. doi: 10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2
  5. Chen M, Li T, Shen X, Wu B (2016) Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J Clim 29:2201–2220. doi: 10.1175/JCLI-D-15-0547.1 CrossRefGoogle Scholar
  6. Chiang JCH, Sobel AH (2002) Tropical tropospheric temperature variations caused by ENSO and Their influence on the remote tropical climate. J Clim 15:2616–2631. doi: 10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2
  7. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  8. Giannini A, Robertson AW, Qian J-H (2007) A role for tropical tropospheric temperature adjustment to El Niño–Southern Oscillation in the seasonality of monsoonal Indonesia precipitation predictability. J Geophys Res. doi: 10.1029/2007JD008519 Google Scholar
  9. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462. doi: 10.1002/qj.49710644905 CrossRefGoogle Scholar
  10. Hamada J-I, Yamanaka MD, Matsumoto J et al (2002) Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J Meteorol Soc Jpn 80:285–310. doi: 10.2151/jmsj.80.285 CrossRefGoogle Scholar
  11. Haylock M, McBride J (2001) Spatial coherence and predictability of Indonesian Wet Season Rainfall. J Clim 14:3882–3887. doi: 10.1175/1520-0442(2001)014<3882:SCAPOI>2.0.CO;2
  12. Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J Clim 16:1775–1790. doi: 10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2
  13. Hsu P, Li T (2012) Role of the boundary layer moisture asymmetry in causing the Eastward propagation of the Madden–Julian oscillation. J Clim 25:4914–4931. doi: 10.1175/JCLI-D-11-00310.1 CrossRefGoogle Scholar
  14. Huang B, Banzon VF, Freeman E et al (2015) Extended Reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J Clim 28:911–930. doi: 10.1175/JCLI-D-14-00006.1 CrossRefGoogle Scholar
  15. Jia X, Ge J, Wang S (2016) Diverse impacts of ENSO on wintertime rainfall over the Maritime Continent: DIVERSE IMPACT OF ENSO. Int J Climatol 36:3384–3397. doi: 10.1002/joc.4562 CrossRefGoogle Scholar
  16. Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932. doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2
  17. Lau N-C, Nath MJ (2000) Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309. doi: 10.1175/1520-0442(2000)013<4287:IOEOTV>2.0.CO;2
  18. Lau N-C, Nath MJ (2003) Atmosphere–Ocean Variations in the Indo-Pacific Sector during ENSO Episodes.J Clim 16:3–20. doi: 10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2
  19. Lee H (2015) General rainfall patterns in Indonesia and the potential impacts of local seas on rainfall intensity. Water 7:1751–1769. doi: 10.3390/w7041751 CrossRefGoogle Scholar
  20. Li T (1997) Phase transition of the El Niño–Southern oscillation: a stationary SST mode. J Atmos Sci 54:2872–2887. doi: 10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2
  21. Li T (2014) Recent advance in understanding the dynamics of the Madden–Julian oscillation. Acta Meteorol Sin 28:1–33. doi: 10.1007/s13351-014-3087-6 CrossRefGoogle Scholar
  22. Li T, Wang B, Chang C-P, Zhang Y (2003) A theory for the Indian Ocean Dipole–Zonal mode. J Atmos Sci 60:2119–2135. doi: 10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2
  23. Li T, Zhang L, Murakami H (2015) Strengthening of the Walker circulation under globalwarming in an aqua-planet general circulation model simulation. Adv Atmos Sci 32:1473–1480. doi: 10.1007/s00376-015-5033-7 CrossRefGoogle Scholar
  24. Li T, Wang B, Wang L (2016) Comments on “Combination mode dynamics of the anomalous Northwest Pacific Anticyclone”. J Clim 29:4685–4693. doi: 10.1175/JCLI-D-15-0385.1 CrossRefGoogle Scholar
  25. Lindzen RS, Nigam S (1987) On the Role of Sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436. doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
  26. Liu W, Huang B, Thorne PW et al (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J Clim 28:931–951. doi: 10.1175/JCLI-D-14-00007.1 CrossRefGoogle Scholar
  27. National Geophysical Data Center (1993) 5-minute Gridded Global Relief Data (ETOPO5)Google Scholar
  28. Philander SGH (1983) El Niño Southern Oscillation phenomena. Nature 302:295–301. doi: 10.1038/302295a0 CrossRefGoogle Scholar
  29. Qian J-H (2008) Why precipitation is mostly concentrated over Islands in the Maritime Continent. J Atmos Sci 65:1428–1441. doi: 10.1175/2007JAS2422.1 CrossRefGoogle Scholar
  30. Ramage CS (1968) Role of a tropical “Maritime Continent” in the atmospheric circulation 1. Mon Weather Rev 96:365–370. doi: 10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2
  31. Ramage CS (1971) Monsoon meteorology. Academic Press, New York, pp 135–141Google Scholar
  32. Rauniyar SP, Walsh KJE (2013) Influence of ENSO on the Diurnal cycle of rainfall over the Maritime Continent and Australia. J Clim 26:1304–1321. doi: 10.1175/JCLI-D-12-00124.1 CrossRefGoogle Scholar
  33. Simpson J, Keenan TD, Ferrier B et al (1993) Cumulus mergers in the maritime continent region. Meteorol Atmos Phys 51:73–99. doi: 10.1007/BF01080881 CrossRefGoogle Scholar
  34. Venzke S, Latif M, Villwock A (2000) The coupled GCM ECHO-2.: Part II: Indian Ocean response to ENSO. J Clim 13:1371–1383. doi: 10.1175/1520-0442(2000)013<1371:TCGE>2.0.CO;2
  35. Wang B, Zhang Q (2002) Pacific–East Asian teleconnection. Part II: how the Philippine Sea anomalous anticyclone is established during El Niño development. J Clim 15:3252–3265. doi: 10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2
  36. Wang B, Wu R, Fu X (2000) Pacific–East Asian teleconnection: how does ENSO affect East Asian Climate? J Clim 13:1517–1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
  37. Wang B, Wu R, Li T (2003) Atmosphere–Warm Ocean interaction and its impacts on Asian–Australian monsoon variation. J Clim 16:1195–1211. doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2
  38. Wu B, Zhou T (2016) Relationships between ENSO and the East Asian–western North Pacific monsoon: observations versus 18 CMIP5 models. Clim Dyn 46:729–743. doi: 10.1007/s00382-015-2609-y CrossRefGoogle Scholar
  39. Wu B, Zhou T, Li T (2009) Contrast of rainfall–SST relationships in the Western North Pacific between the ENSO-developing and ENSO-decaying summers. J Clim 22:4398–4405. doi: 10.1175/2009JCLI2648.1 CrossRefGoogle Scholar
  40. Wu B, Li T, Zhou T (2010) Relative contributions of the Indian Ocean and Local SST Anomalies to the maintenance of the Western North Pacific anomalous anticyclone during the El Niño decaying summer. J Clim 23:2974–2986. doi: 10.1175/2010JCLI3300.1 CrossRefGoogle Scholar
  41. Wu B, Zhou T, Li T (2017) Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone. Maintenance mechanisms, Part IGoogle Scholar
  42. Yanai M, Esbensen S, Chu J-H (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627. doi: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
  43. Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian Monsoon: a diagnostic study of the’86/87 and ’91/92 events. J Meteorol Soc Jpn Ser II 74:49–62. doi: 10.2151/jmsj1965.74.1_49 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environmental Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science and TechnologyNanjingChina
  2. 2.Department of Atmospheric SciencesUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations