Comparison of the effect of land-sea thermal contrast on interdecadal variations in winter and summer blockings

  • Yongli He
  • Jianping Huang
  • Dongdong Li
  • Yongkun Xie
  • Guolong Zhang
  • Yulei Qi
  • Shanshan Wang
  • Sonja Totz
Article

Abstract

The influence of winter and summer land-sea surface thermal contrast on blocking for 1948–2013 is investigated using observations and the coupled model intercomparison project outputs. The land-sea index (LSI) is defined to measure the changes of zonal asymmetric thermal forcing under global warming. The summer LSI shows a slower increasing trend than winter during this period. For the positive of summer LSI, the EP flux convergence induced by the land-sea thermal forcing in the high latitude becomes weaker than normal, which induces positive anomaly of zonal-mean westerly and double-jet structure. Based on the quasiresonance amplification mechanism, the narrow and reduced westerly tunnel between two jet centers provides a favor environment for more frequent blocking. Composite analysis demonstrates that summer blocking shows an increasing trend of event numbers and a decreasing trend of durations. The numbers of the short-lived blocking persisting for 5–9 days significantly increases and the numbers of the long-lived blocking persisting for longer than 10 days has a weak increase than that in negative phase of summer LSI. The increasing transient wave activities induced by summer LSI is responsible for the decreasing duration of blockings. The increasing blocking due to summer LSI can further strengthen the continent warming and increase the summer LSI, which forms a positive feedback. The opposite dynamical effect of LSI on summer and winter blocking are discussed and found that the LSI-blocking negative feedback partially reduces the influence of the above positive feedback and induce the weak summer warming rate.

Keywords

Land-sea thermal contrast Blocking Asymmetric warming Double-jet 

Supplementary material

382_2017_3954_MOESM1_ESM.docx (5.6 mb)
Supplementary material 1 (DOCX 5774 KB)

References

  1. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic press, San Francisco, pp 489Google Scholar
  2. Arai M, Kimoto M (2008) Simulated interannual variation in summertime atmospheric circulation associated with the East Asian monsoon. Clim Dyn 31:435–447. doi:10.1007/s00382-007-0317-y CrossRefGoogle Scholar
  3. Charney JG, DeVore JG (1979) Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci 36:1205–1216CrossRefGoogle Scholar
  4. Chen W, Yang S, Huang RH (2005) Relationship between stationary planetary wave activity and the East Asian winter monsoon. J Geophys Res D Atmos 110:1–12. doi:10.1029/2004JD005669 Google Scholar
  5. Cohen J (2016) An observational analysis: tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification. Geophys Res Lett 43:5287–5294. doi:10.1002/2016GL069102 CrossRefGoogle Scholar
  6. Cohen J, Jones J, Furtado JC, Tziperman E (2013) Warm Arctic, cold continents: a common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography 26:150–160. doi:10.5670/oceanog.2013.70 CrossRefGoogle Scholar
  7. Cohen J, Screen J a., Furtado JC et al (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637. doi:10.1038/ngeo2234 CrossRefGoogle Scholar
  8. Dole R, Hoerling M, Perlwitz J et al (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38:1–5. doi:10.1029/2010GL046582 CrossRefGoogle Scholar
  9. Dong B, Gregory JM, Sutton RT (2009) Undestanding land-sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J Clim 22:3079–3097. doi:10.1175/2009JCLI2652.1 CrossRefGoogle Scholar
  10. Dunn-Sigouin E, Son S-w (2013) Northern Hemisphere blocking frequency and duration in the CMIP5 models. J Geophys Res 118:1179–1188Google Scholar
  11. Egger J (1978) Dynamics of blocking highs. J Atmos Sci 35:1788–1801. doi:10.1175/1520-0469(1978)035<1788:DOBH>2.0.CO;2
  12. Fu Q, Johanson CM, Wallace JM, Reichler T (2006) Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312:1179–1179. doi:10.1126/science.1125566 CrossRefGoogle Scholar
  13. Grise K, Polvani L (2014) The response of midlatitude jets to increased CO2: distringuishing the roles of sea surface temperature and direct radiative forcing. Geophys Res Lett 41:6863–6871. doi:10.1002/2014GL061638 CrossRefGoogle Scholar
  14. Guan X, Huang J, Guo R et al (2015a) Role of radiatively forced temperature changes in enhanced semi-arid warming over East Asia. Atmos Chem Phys 15:22975–23004. doi:10.5194/acpd-15-22975-2015 CrossRefGoogle Scholar
  15. Guan X, Huang J, Guo R, Lin P (2015b) The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere. Sci Rep 5:12669. doi:10.1038/srep12669 CrossRefGoogle Scholar
  16. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi:10.1029/2010RG000345 CrossRefGoogle Scholar
  17. He Y, Huang J, Ji M (2014) Impact of land–sea thermal contrast on interdecadal variation in circulation and blocking. Clim Dyn 43:3267–3279. doi:10.1007/s00382-014-2103-y CrossRefGoogle Scholar
  18. Huang J, Guan X, Ji F (2012) Enhanced cold-season warming in semi-arid regions. Atmos Chem Phys 12:5391–5398CrossRefGoogle Scholar
  19. Huang J, Xie Y, Guan X et al (2016a) The dynamics of the warming hiatus over the Northern Hemisphere. Clim Dyn 48:429. doi:10.1007/s00382-016-3085-8 CrossRefGoogle Scholar
  20. Huang J, Yu H, Guan X et al (2016b) Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–171. doi:10.1038/nclimate2837 Google Scholar
  21. Inoue J, Hori ME, Takaya K (2012) The role of barents sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J Clim 25:2561–2569. doi:10.1175/JCLI-D-11-00449.1 CrossRefGoogle Scholar
  22. Ji F, Wu Z, Huang J, Chassignet EP (2014) Evolution of land surface air temperature trend. Nat Clim Chang 4:462–466CrossRefGoogle Scholar
  23. Joshi MM, Gregory JM, Webb MJ et al (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465. doi:10.1007/s00382-007-0306-1 CrossRefGoogle Scholar
  24. Kaas E, Branstator G (1993) The relationship between a zonal index and blocking activity.J Atmos Sci 50:3061–3077. doi:10.1175/1520-0469(1993)050<3061:TRBAZI>2.0.CO;2
  25. Kalnay E, Kanamitsu M, Kistler R et al. (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  26. Kamae Y, Watanabe M, Kimoto M, Shiogama H (2014a) Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—part I: past changes and future projections. Clim Dyn 43:2553–2568. doi:10.1007/s00382-014-2073-0 CrossRefGoogle Scholar
  27. Kamae Y, Watanabe M, Kimoto M, Shiogama H (2014b) Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—part II: Importance of CO2-induced continental warming. Clim Dyn 43:2569–2583. doi:10.1007/s00382-014-2146-0 CrossRefGoogle Scholar
  28. Kawatani Y, Hamilton K, Noda A (2012) The effects of changes in sea surface temperature and CO2 concentration on the quasi-biennial oscillation. J Atmos Sci 69:1734–1749. doi:10.1175/JAS-D-11-0265.1 CrossRefGoogle Scholar
  29. Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan Ser II 93:5–48. doi:10.2151/jmsj.2015-001 CrossRefGoogle Scholar
  30. Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407. doi:10.1038/nature12534 CrossRefGoogle Scholar
  31. Li J, Wang J (2003) A modified zonal index and its physical sense. Geophys Res LettGoogle Scholar
  32. Li C, Stevens B, Marotzke J (2015) Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys Res Lett 42:8131–8139. doi:10.1002/2015GL065327 CrossRefGoogle Scholar
  33. Luo D, Yao Y, Feldstein SB (2014a) Regime transition of the North Atlantic oscillation and the extreme cold Event over Europe in January–February 2012. Mon Weather Rev 142:4735–4757. doi:10.1175/MWR-D-13-00234.1 CrossRefGoogle Scholar
  34. Luo D, Cha J, Zhong L, Dai A (2014b) A nonlinear multiscale interaction model for atmospheric blocking: the eddy-blocking matching mechanism. Q J R Meteorol Soc 140:1785–1808. doi:10.1002/qj.2337 CrossRefGoogle Scholar
  35. Luo D, Xiao Y, Yao Y et al (2016) Impact of ural blocking on winter warm Arctic–cold Eurasian anomalies. part I: blocking-induced amplification. J Clim 29:3925–3947. doi:10.1175/JCLI-D-15-0611.1 CrossRefGoogle Scholar
  36. Luo D, Yao Y, Dai A et al (2017a) Increased quasi-stationarity and persistence of winter ural blocking and Eurasian extreme cold events in response to Arctic warming. part I: insights from observational analyses. J Clim. doi:10.1175/JCLI-D-16-0261.1 Google Scholar
  37. Luo D, Yao Y, Dai A et al (2017b) Increased quasi-stationarity and persistence of winter ural blocking and Eurasian extreme cold events in response to arctic warming. part II: a theoretical explanation. J Clim. doi:10.1175/JCLI-D-16-0262.1 Google Scholar
  38. Masato G, Hoskins BJ, Woollings TJ (2012) Wave-breaking characteristics of midlatitude blocking. Q J R Meteorol Soc 138:1285–1296. doi: 10.1002/qj.990 CrossRefGoogle Scholar
  39. Masato G, Hoskins BJ, Woollings T (2013) Winter and summer Northern hemisphere blocking in CMIP5 models. J Clim 26:7044–7059. doi: 10.1175/JCLI-D-12-00466.1 CrossRefGoogle Scholar
  40. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  41. Molnos S, Mamdouh T, Petri S et al (2017) A network-based detection scheme for the jet stream core. Earth Syst Dyn 8:75–89. doi: 10.5194/esd-8-75-2017 CrossRefGoogle Scholar
  42. Molteni F, King MP, Kucharski F, Straus DM (2011) Planetary-scale variability in the northern winter and the impact of land-sea thermal contrast. Clim Dyn 37:151–170. doi: 10.1007/s00382-010-0906-z CrossRefGoogle Scholar
  43. Mori M, Watanabe M, Shiogama H et al (2014) Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat Geosci 7:869–874. doi: 10.1038/ngeo2277 CrossRefGoogle Scholar
  44. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res Atmos 117:1–22. doi: 10.1029/2011JD017187 CrossRefGoogle Scholar
  45. Nakamura H, Fukamachi T (2004) Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Q J R Meteorol Soc 130:1213–1233. doi:10.1256/qj.03.101 CrossRefGoogle Scholar
  46. Nakamura H, Nakamura M, Anderson JL (1997) The Role of high- and low-frequency dynamics in blocking formation. Mon Weather Rev 125:2074–2093. doi:10.1175/1520-0493 CrossRefGoogle Scholar
  47. Ogi M, Yamazaki K, Tachibana Y (2004) The summertime annular mode in the Northern Hemisphere and its linkage to the winter mode. J Geophys Res D Atmos 109:1–15. doi:10.1029/2004JD004514 CrossRefGoogle Scholar
  48. Ogi M, Yamazaki K, Tachibana Y (2005) The summer northern annular mode and abnormal summer weather in 2003. Geophys Res Lett 32:1–4. doi:10.1029/2004GL021528 CrossRefGoogle Scholar
  49. Otto FEL, Massey N, Van Oldenborgh GJ et al (2012) Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys Res Lett 39:1–5. doi:10.1029/2011GL050422 CrossRefGoogle Scholar
  50. Petoukhov V, Rahmstorf S, Petri S, Joachim H (2013) Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc Natl Acad Sci. doi:10.1073/pnas.1222000110 Google Scholar
  51. Petoukhov V, Petri S, Rahmstorf S et al (2016) Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proc Natl Acad Sci 113:6862–6867. doi:10.1073/pnas.1606300113 CrossRefGoogle Scholar
  52. Pfahl S, Schwierz C, Croci-Maspoli M et al (2015) Importance of latent heat release in ascending air streams for atmospheric blocking. Nat Geosci 8:610–614. doi:10.1038/ngeo2487 CrossRefGoogle Scholar
  53. Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci 108:17905–17909. doi:10.1073/pnas.1101766108 CrossRefGoogle Scholar
  54. Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi:10.1029/2002JD002670 Google Scholar
  55. Rikus L (2015) A simple climatology of westerly jet streams in global reanalysis datasets part I: mid latitude upper tropospheric jets, Clim Dynam. doi:10.1007/s00382-015-2560-y
  56. Scaife AA, Woollings T, Knight J et al (2010) Atmospheric blocking and mean biases in climate models. J Clim 23:6143–6152. doi:10.1175/2010JCLI3728.1 CrossRefGoogle Scholar
  57. Seneviratne SI, Donat MG, Mueller B, Alexander LV (2014) No pause in the increase of hot temperature extremes. Nat Clim Chang 4:161–163. doi: 10.1038/nclimate2145 CrossRefGoogle Scholar
  58. Shabbar A, Huang J, Higuchi K (2001) The relationship between the wintertime North Atlantic oscillation and blocking episodes in the North Atlantic. Int J Climatol 21:355–369. doi:10.1002/joc.612 CrossRefGoogle Scholar
  59. Shaw T, Voigt A (2015) Tug of war on summertime circulation between radiative forcing and sea surface warming. Nature Geosci 8:560–566. doi:10.1038/NGEO2449 CrossRefGoogle Scholar
  60. Shutts GJ (1983) The propagation of eddies in diffiuent jetstreams : eddy vorticity forcing of’ blocking’ flow fields. Q J R Meteorol Soc 737–761. doi:10.1002/qj.49710946204
  61. Sillmann J, Donat MG, Fyfe JC, Zwiers FW (2014) Observed and simulated temperature extremes during the recent warming hiatus. Environ Res Lett 9:064023. doi:10.1088/1748-9326/9/6/064023 CrossRefGoogle Scholar
  62. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614. doi:10.1038/nature03089 CrossRefGoogle Scholar
  63. Sun L, Perlwitz J, Hoerling M (2016) What caused the recent “Warm Arctic, cold continents” trend pattern in winter temperatures?. Geophys Res Lett 5345–5352. doi:10.1002/2016GL069024
  64. Sutton RT, Dong B, Gregory JM (2007) Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys Res Lett 34:2–6. doi:10.1029/2006GL028164 CrossRefGoogle Scholar
  65. Tachibana Y, Nakamura T, Komiya H, Takahashi M (2010) Abrupt evolution of the summer Northern Hemisphere annular mode and its association with blocking. J Geophys Res Atmos 115:1–13. doi:10.1029/2009JD012894 CrossRefGoogle Scholar
  66. Taylor KE, Stouffer RJ, Meehl G a. (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  67. Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus A 42:343–365. doi:10.1034/j.1600-0870.1990.t01-2-00003.x CrossRefGoogle Scholar
  68. Trenberth K, Fasullo J, Branstator G, Philips A (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Chang 4:911–916. doi:10.1038/nclimate2341 CrossRefGoogle Scholar
  69. Tung KK, Lindzen RS (1979) A theory of stationary long waves. part I: a simple theory of blocking. Mon Weather Rev 107:714–734. doi:10.1175/1520-0493 CrossRefGoogle Scholar
  70. Tyrlis E, Hoskins BJ (2008) Aspects of a Northern hemisphere atmospheric blocking climatology. J Atmos Sci 65:1638–1652. doi:10.1175/2007JAS2337.1 CrossRefGoogle Scholar
  71. Wallace JM, Fu Q, Smoliak BV et al (2012) Simulated versus observed patterns of warming over the extratropical Northern hemisphere continents during the cold season. Proc Natl Acad Sci 109:14337–14342CrossRefGoogle Scholar
  72. Wallace JM, Zhang Y, Bajuk L (1996) Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J Clim 9:249–259. doi:10.1175/1520-0442(1996)009<0249:IOITIN>2.0.CO;2
  73. Wu Q, Straus DM (2004) AO, COWL, and observed climate trends. J Clim 17:2139–2156. doi:10.1175/1520-0442(2004)017<2139:ACAOCT>2.0.CO;2 CrossRefGoogle Scholar
  74. Wu Q, Cheng L, Chan D et al (2016) Suppressed midlatitude summer atmospheric warming by Arctic sea ice loss during 1979–2012. Geophys Res Lett 43:2792–2800. doi:10.1002/2016GL068059 CrossRefGoogle Scholar
  75. Yamazaki A, Itoh H (2013) Vortex–Vortex interactions for the maintenance of blocking. Part I: the selective absorption mechanism and a case study. J Atmos Sci 70:725–742. doi:10.1175/JAS-D-11-0295.1 CrossRefGoogle Scholar
  76. Zhang J, Tian W, Chipperfield MP et al (2016) Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat Clim Chang 6:1094–1099. doi:10.1038/nclimate3136 CrossRefGoogle Scholar
  77. Zhu Z, Zhu B (1982) The nonlinear equilibrium states of ultra-long waves induced by zonal asymmetric thermal forcing and blocking situation. Sci Sinica 25:1201–1212 (Chinese).Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.School of Atmospheric SciencesChengdu University of Information TechnologyChengduChina
  4. 4.Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province and Key Open Laboratory of Arid Climate Change and Disaster Reduction of CMAInstitute of Arid Meteorology CMALanzhouChina
  5. 5.Department of PhysicsUniversity of PotsdamPotsdamGermany

Personalised recommendations