Climate Dynamics

, Volume 51, Issue 1–2, pp 627–637 | Cite as

Quantification of temperature persistence over the Northern Hemisphere land-area

  • Peter PfleidererEmail author
  • Dim Coumou


Extreme weather events such as heat waves and floods are damaging to society and their contribution to future climate impacts is expected to be large. Such extremes are often related to persistent local weather conditions. Weather persistence is linked to sea surface temperatures, soil-moisture (especially in summer) and large-scale circulation patterns and these factors can alter under past and future climate change. Though persistence is a key characteristic for extreme weather events, to date the climatology and potential changes in persistence have only been poorly documented. Here, we present a systematic analysis of temperature persistence for the northern hemisphere land area. We define persistence as the length of consecutive warm or cold days and use spatial clustering techniques to create regional persistence distributions. We find that persistence is longest in the Arctic and shortest in the mid-latitudes. Parameterizations of the regional persistence distributions show that they are characterized by an exponential decay with a drop in the decay rate for very persistent events, implying that feedback mechanisms are important in prolonging these events. For the mid-latitudes, we find that persistence in summer has increased over the past 60 years. The changes are particularly pronounced for prolonged events suggesting a lengthening in the duration of heat waves.


Extreme weather Persistence Blocking Climate change 



We acknowledge the HadGHCND dataset from the Met Office Hadley Centre. We also gratefully acknowledge the European Regional Development Fund (ERDF), the German Federal Ministry of Education and Research (BMBF) and the Land Brandenburg for supporting this project by providing resources on the high performance computer system at the Potsdam Institute for Climate Impact Research. The presented work was supported by the German Federal Ministry of Education and Research (Grant No. 01LN1304A).


  1. Alexander L (2011) Climate science: extreme heat rooted in dry soils. Nat Geosci 4(1):12–13. doi: 10.1038/ngeo1045 CrossRefGoogle Scholar
  2. Barnes EA, Dunn-Sigouin E, Masato G, Woollings T (2014) Exploring recent trends in Northern Hemisphere blocking. Geophys Res Lett 41(2):638–644. doi: 10.1002/2013GL058745 CrossRefGoogle Scholar
  3. Barriopedro D, García-Herrera R, Lupo AR, Hernández E (2006) A climatology of Northern Hemisphere blocking. J Clim 19(6):1042–1063. doi: 10.1175/JCLI3678.1 CrossRefGoogle Scholar
  4. Chang EKM, Ma C, Zheng C, Yau AMW (2016) Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys Res Lett 43:2200–2208. doi: 10.1002/2016GL068172.Received CrossRefGoogle Scholar
  5. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2(7):491–496. doi: 10.1038/nclimate1452 CrossRefGoogle Scholar
  6. Coumou D, Robinson A (2013) Historic and future increase in the global land area affected by monthly heat extremes. Environ Res Lett 8(3):34018. doi: 10.1088/1748-9326/8/3/034018 CrossRefGoogle Scholar
  7. Coumou D, Robinson A, Rahmstorf S (2013) Global increase in record-breaking monthly-mean temperatures. Clim Change 118(3–4):771–782CrossRefGoogle Scholar
  8. Coumou D, Petoukhov V, Rahmstorf S, Petri S, Schellnhuber HJ (2014) Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc Natl Acad Sci 111(34):12331–12336. doi: 10.1073/pnas.1412797111 CrossRefGoogle Scholar
  9. Coumou D, Lehmann J, Beckmann J (2015). The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348(6232), 324–327.
  10. Davini P, D’Andrea F (2016) Northern Hemisphere atmospheric blocking representation in global climate models: twenty years of improvements? J Clim 29(24):8823–8840. doi: 10.1175/JCLI-D-16-0242.1 CrossRefGoogle Scholar
  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  12. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Caesar J (2013) Global land-based datasets for monitoring climatic extremes. Bull Am Meteorol Soc 94(7):997–1006. doi: 10.1175/BAMS-D-12-00109.1 CrossRefGoogle Scholar
  13. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J Clim 20(20):5081–5099. doi: 10.1175/JCLI4288.1 CrossRefGoogle Scholar
  14. Guilbert J, Betts AK, Rizzo DM, Beckage B, Bomblie A (2015). of precipitation in the northeastern United States, pp 1–6. doi: 10.1002/2015GL063124.Received
  15. Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4(1):17–21. doi: 10.1038/ngeo1032 CrossRefGoogle Scholar
  16. IPCC (2014). Climate change 2014: synthesis report. Pachauri RK, Meyer LA (eds). Cambridge Univ. PressGoogle Scholar
  17. Kornhuber K, Petoukhov V, Petri S, Rahmstorf S, Coumou D (2016). Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer. Clim Dyn 1–19. doi: 10.1007/s00382-016-3399-6
  18. Kornhuber K, Petoukhov V, Karoly D, Petri S, Rahmstorf S, Coumou D (2017) Summertime planetary wave-resonance in the Northern and Southern Hemisphere. J Clim. doi: 10.1175/JCLI-D-16-0703.1 Google Scholar
  19. Kretschmer M, Coumou D, Donges JF, Runge J (2016). Using Causal Effect Networks to analyze different Arctic drivers of mid-latitude winter circulation. J Clim 160303130523003. doi: 10.1175/JCLI-D-15-0654.1
  20. Kretschmer M, Coumou D, Tziperman E, Cohen J (2017). More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull Amer Meteor Soc. (in print)Google Scholar
  21. Lau WKM, Kim K-M (2012) The 2010 Pakistan flood and russian heat wave: teleconnection of hydrometeorological extremes. J Hydrometeorol 13(1):392–403. doi: 10.1175/JHM-D-11-016.1 CrossRefGoogle Scholar
  22. Lehmann J, Coumou D (2015) The influence of mid-latitude storm tracks on hot, cold, dry, and wet extremes. Sci Rep 5(17491):1–9Google Scholar
  23. Lehmann J, Coumou D, Frieler K, Eliseev AV, Levermann A (2014) Future changes in extratropical storm tracks and baroclinicity under climate change. Environ Res Lett 9(8):84002. doi: 10.1088/1748-9326/9/8/084002 CrossRefGoogle Scholar
  24. Lehmann J, Coumou D, Frieler K (2015) Increased record-breaking precipitation events under global warming. Clim Change 132(4):501–515. doi: 10.1007/s10584-015-1434-y CrossRefGoogle Scholar
  25. Mann ME, Rahmstorf S, Kornhuber K, Steinman BA, Miller SK, Coumou D (2017) Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci Rep 7:45242. doi: 10.1038/srep45242 CrossRefGoogle Scholar
  26. Matsueda M (2011) Predictability of Euro-Russian blocking in summer of 2010. Geophys Res Lett 38(6):1–6. doi: 10.1029/2010GL046557 CrossRefGoogle Scholar
  27. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Eight conference on applied climatology. American Meteorological Society, Anaheim, pp 179–184Google Scholar
  28. Murakami M, Murakami M (1979) Large-scale aspects of deep convective activity over the GATE area. Month Weather Rev 107(8):994–1013. doi: 10.1175/1520-0493(1979)107<0994:LSAODC>2.0.CO;2
  29. National Center for Atmospheric Research, UC for A. R. (2013) Standardized precipitation index (SPI) for global land surface (1949–2012). Boulder, CO: research data archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. doi: 10.5065/D6086397
  30. Petoukhov V, Petri S, Rahmstorf S, Coumou D, Kornhuber K, Schellnhuber HJ (2016) Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. Proc Natl Acad Sci 113(25):6862–6867. doi: 10.1073/pnas.1606300113 CrossRefGoogle Scholar
  31. Plavcová E, Kyselý J (2016) Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Clim Dyn 46(9–10):2805–2820. doi: 10.1007/s00382-015-2733-8 CrossRefGoogle Scholar
  32. Screen JA, Simmonds I (2014) Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat Climate Change 4(8):704–709. doi: 10.1038/nclimate2271 CrossRefGoogle Scholar
  33. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. doi: 10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  34. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, pp 109–230Google Scholar
  35. Stadtherr L, Coumou D, Petoukhov V, Petri S, Rahmstorf S (2016). Record Balkan floods of 2014 linked to planetary wave resonance. Sci Adv 2(4), e1501428–e1501428. doi: 10.1126/sciadv.1501428 CrossRefGoogle Scholar
  36. Swain DL, Tsiang M, Haugen M, Singh D, Charland A, Rajaratnam B, Diffenbaugh NS (2014) The extraordinary California drought of 2013/2014: character, context, and the role of climate change. Bull Am Meteorol Soc 95(9):S3Google Scholar
  37. Tyrlis E, Hoskins BJ (2008) Aspects of a Northern Hemisphere atmospheric blocking climatology. J Atmos Sci 65(5):1638–1652. doi: 10.1175/2007JAS2337.1 CrossRefGoogle Scholar
  38. Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918. doi: 10.1175/JCLI-D-12-00502.1 CrossRefGoogle Scholar
  39. Wilks D, Sciences A (2016) The stippling shows statistically significant grid points. 97:2263–2274Google Scholar
  40. Zolina O (2014) Multidecadal trends in the duration of wet spells and associated intensity of precipitation as revealed by a very dense observational German network. Environ Res Lett 9(2):25003. doi: 10.1088/1748-9326/9/2/025003 CrossRefGoogle Scholar
  41. Zolina O, Simmer C, Belyaev K, Gulev SK, Koltermann P (2013). Changes in the duration of European wet and dry spells during the last 60 years. J Clim 26(6), 2022–2047. doi: 10.1175/JCLI-D-11-00498.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact Research, Earth System AnalysisPotsdamGermany
  2. 2.Climate AnalyticsBerlinGermany
  3. 3.Departement of Water and Climate Risk, Institute for Environmental Studies (IVM)VU Universisty AmsterdamAmsterdamThe Netherlands

Personalised recommendations