The connection between the second leading mode of the winter North Pacific sea surface temperature anomalies and stratospheric sudden warming events

  • Yuanpu Li
  • Wenshou Tian
  • Fei Xie
  • Zhiping Wen
  • Jiankai Zhang
  • Dingzhu Hu
  • Yuanyuan Han


Using the Hadley Center HadISST dataset and the NCEP/NCAR reanalysis dataset over the winters (December–February) from 1948 to 2014, this paper investigates the connections between the first two primary components of the sea surface temperature (SST) anomalies over the North Pacific and the stratospheric sudden warmings (SSWs) in the Northern Hemisphere winter. The results show that the winter SSW duration is more correlated to the second primary component (PC2) than the first primary component (PC1). The SSW event occurs more frequently and the winter SSW duration is longer during the positive phases of PC2 than the negative phases of PC2. The analysis also reveals that there are 10–20 year oscillations in the SSW duration after 1980, which are related to the decadal variation of PC2. The positive phases of PC2 are marked by more positive Pacific–North America (PNA) and western Pacific (WP) teleconnections in the upper troposphere. Consequently, wavenumber-1 planetary waves in the upper troposphere are strengthened and the upward Eliassen–Palm fluxes (EP fluxes) in the extratropical stratosphere are enhanced. The enhanced upward EP fluxes into the stratosphere result in SSWs persisting longer. The negative phase of PC2 has the opposite effect on the SSW duration to the positive phase of PC2. Although the SST anomalies associated with PC2 are mainly driven by the atmosphere, our model simulations show that SST anomalies of PC2 are capable of producing a feedback on the PNA and the WP and modulating the variability of SSWs.


Stratospheric sudden warmings Teleconnections Sea surface temperature 



We are grateful to the groups and agencies that provided the datasets analyzed in this study. This work is supported by the National Natural Science Foundation of China (41225018, 41575038 and 41630421).


  1. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic press, San DiegoGoogle Scholar
  2. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584CrossRefGoogle Scholar
  3. Bell CJ, Gray LJ, Charlton-Perez AJ, Joshi MM, Scaife AA (2009) Stratospheric communication of El Niño teleconnections to European winter. J Clim 22:4083–4096CrossRefGoogle Scholar
  4. Bond N, Overland J, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30:2183. doi: 10.1029/2003GL018597 CrossRefGoogle Scholar
  5. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  6. Brönnimann S (2007) Impact of El Niño–southern oscillation on European climate. Rev Geophys 45:RG3003. doi: 10.1029/2006RG000199 CrossRefGoogle Scholar
  7. Butler AH, Seidel DJ, Hardiman SC, Butchart N, Birner T, Match A (2015) Defining sudden stratospheric warmings. Bull Am Meteor Soc 96:1913–1928. doi: 10.1175/BAMS-D-13-00173.1 CrossRefGoogle Scholar
  8. Calvo N, Garcia RR, Randel WJ, Marsh DR (2010) Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J Atmos Sci 67:2331–2340CrossRefGoogle Scholar
  9. Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim 20:449–469CrossRefGoogle Scholar
  10. Chhak KC, Di Lorenzo E, Schneider N, Cummins PF (2009) Forcing of low-frequency ocean variability in the Northeast Pacific*. J Clim 22:1255–1276CrossRefGoogle Scholar
  11. Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res Atmos 112:D09301. doi: 10.1029/2006JD007485.Google Scholar
  12. Di Lorenzo E, Schneider N, Cobb K, Franks P, Chhak K, Miller A, McWilliams J, Bograd S, Arango H, Curchitser E (2008) North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi: 10.1029/2007GL032838 CrossRefGoogle Scholar
  13. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Nino and decadal climate change in the North Pacific Ocean. Nat Geosci 3:762–765CrossRefGoogle Scholar
  14. Ding R, Li J, Tseng Y, Sun C, Guo Y (2015) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res Atmos 120(1):27–45CrossRefGoogle Scholar
  15. Furtado JC, Di Lorenzo E, Schneider N, Bond NA (2011) North Pacific decadal variability and climate change in the IPCC AR4 models. J Clim 24:3049–3067CrossRefGoogle Scholar
  16. Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res Atmos 113:D18114. doi: 10.1029/2008JD009920 CrossRefGoogle Scholar
  17. Gray LJ (2003) The influence of the equatorial upper stratosphere on stratospheric sudden warmings. Geophys Res Lett 30:1166. doi: 10.1029/2002GL016430 Google Scholar
  18. Holton JR (1976) A semi-spectral numerical model for wave-mean flow interactions in the stratosphere: application to sudden stratospheric warmings. J Atmos Sci 33:1639–1649CrossRefGoogle Scholar
  19. Holton JR, Tan HC (1980) The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J Atmos Sci 37:2200–2208CrossRefGoogle Scholar
  20. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109:813–829CrossRefGoogle Scholar
  21. Hu Y, Pan L (2009) Arctic stratospheric winter warming forced by observed SSTs. Geophys Res Lett 36(11). doi: 10.1029/2009GL037832
  22. Hu D, Tian W, Xie F, Shu J, Dhomse S (2014) Effects of meridional sea surface temperature gradients on the stratospheric temperature and circulation. Adv Atmos Sci 31:888–900. doi: 10.1007/s00376-013-3152-6 CrossRefGoogle Scholar
  23. Hurwitz MM, Newman PA, Garfinkel CI (2011) The Arctic vortex in March 2011: a dynamical perspective. Atmos Chem Phys 11:11447–11453. doi: 10.5194/acp-11-11447-2011 CrossRefGoogle Scholar
  24. Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperature on the Arctic winter climate. J Geophys Res Atmos 117:D19110. doi: 10.1029/2012JD017819 CrossRefGoogle Scholar
  25. Ito K, Naito Y, Yoden S (2009) Combined effects of QBO and 11-year solar cycle on the winter hemisphere in a stratosphere-troposphere coupled system. Geophys Res Lett 36:L11804. doi: 10.1029/2008GL037117 CrossRefGoogle Scholar
  26. Jadin EA, Wei K, Zyulyaeva YA, Chen W, Wang L (2010) Stratospheric wave activity and the Pacific Decadal Oscillation. J Atmos Sol-Terr Phy 72:1163–1170. doi: 10.1016/j.jastp.2010.07.009 CrossRefGoogle Scholar
  27. Kren AC, Marsh DR, Smith AK, Pilewskie P (2016) Wintertime northern hemisphere response in the stratosphere to the pacific decadal oscillation using the whole atmosphere community climate model. J Climate 29:1031–1049 doi. doi: 10.1175/JCLI-D-15-0176.1 CrossRefGoogle Scholar
  28. Krüger K, Naujokat B, Labitzke K (2005) The unusual midwinter warming in the Southern Hemisphere stratosphere 2002: a comparison to Northern Hemisphere phenomena. J Atmos Sci 62:603–613CrossRefGoogle Scholar
  29. Kushnir Y, Robinson WA, Blade I, Hall N M J, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15(16):2233–2256CrossRefGoogle Scholar
  30. Kwon YO, Deser C (2007) North pacific decadal variability in the community climate system model version 2. J Clim 20(11):2416–2433CrossRefGoogle Scholar
  31. Labitzke K, Kunzel M, Broennimann S (2006) Sunspots, the QBO and the stratosphere in the North Polar Region—20 years later. Meteorol Z 15:355–363CrossRefGoogle Scholar
  32. Li Y, Tian W (2017) Different impact of central pacific and eastern Pacific El Niño on SSW duration. Adv Atmos Sci 34(6):771–782. doi: 10.1007/s00376-017-6286-0 CrossRefGoogle Scholar
  33. Li Y, Li J, Feng J (2012) A teleconnection between the reduction of rainfall in Southwest Western Australia and North China. J Clim 25:8444–8461CrossRefGoogle Scholar
  34. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58(1):35–44CrossRefGoogle Scholar
  35. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  36. Martius O, Polvani LM, Davies HC (2009) Blocking precursors to stratospheric sudden warming events. Geophys Res Lett 36:L14806. doi: 10.1029/2009GL038776 CrossRefGoogle Scholar
  37. Matsuno T (1970) Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J Atmos Sci 27:871–883CrossRefGoogle Scholar
  38. Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28:1479–1494CrossRefGoogle Scholar
  39. Mitchell DM, Gray LJ, Anstey J, Baldwin MP, Charlton-Perez AJ (2013) The influence of stratospheric vortex displacements and splits on surface climate. J Climate 26:2668–2682. doi: 10.1175/jcli-d-12-00030.1 CrossRefGoogle Scholar
  40. Nakamura H, Lin G, Yamagata T (1997) Decadal climate variability in the North Pacific during the recent decades. Bull Am Meteor Soc 78:2215–2225CrossRefGoogle Scholar
  41. Naoe H, Shibata K (2010) Equatorial quasi-biennial oscillation influence on northern winter extratropical circulation. J Geophys Res Atmos 115:D19102. doi: 10.1029/2009JD012952 CrossRefGoogle Scholar
  42. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the pacific decadal oscillation. J Clim 16:3853–3857. doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2
  43. Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H (2016) The Pacific decadal oscillation, revisited. J Clim 29:4399–4427. doi: 10.1175/JCLI-D-15-0508.1 CrossRefGoogle Scholar
  44. Nigam S (2003) Teleconnections. Encyclopedia of atmospheric sciences, Holton JR, Pyle JA, Curry JA (eds) Elsevier, pp 2243–2269Google Scholar
  45. Nishii K, Nakamura H, Orsolini YJ (2010) Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys Res Lett 37:L13805. doi: 10.1029/2010GL043551 Google Scholar
  46. O’Neill A (2003) Stratospheric sudden warmings. Encyclopedia of atmospheric sciences. In: Holton JR, Pyle JA, Curry JA (eds) Elsevier, pp 1342–1353Google Scholar
  47. Pawson S, Naujokat B (1999) The cold winters of the middle 1990s in the northern lower stratosphere. J Geophys Res Atmos 104:14209–14222CrossRefGoogle Scholar
  48. Pierce DW, Barnett TP, Schneider N, Saravanan R, Dommenget D, Latif M (2001) The role of ocean dynamics in producing decadal climate variability in the North Pacific. Clim Dyn 18:51–70CrossRefGoogle Scholar
  49. Quiroz RS (1986) The association of stratospheric warmings with tropospheric blocking. J Geophys Res 91:5277–5285CrossRefGoogle Scholar
  50. Rayner N, Parker DE, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  51. Reichler T, Kim J, Manzini E, Kröger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci 5:783–787CrossRefGoogle Scholar
  52. Ren RC, Cai M, Xiang C, Wu G (2011) Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Clim Dyn 38:1345–1358. doi: 10.1007/s00382-011-1137-7 CrossRefGoogle Scholar
  53. Taguchi M, Hartmann DL (2006) Increased occurrence of stratospheric sudden warmings during El Nino as simulated by WACCM. J Clim 19:324–332CrossRefGoogle Scholar
  54. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812CrossRefGoogle Scholar
  55. Wang L, Chen W (2010) Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys Res Lett 37:L09707. doi: 10.1029/2010GL042659 Google Scholar
  56. Waugh DW, Polvani LM (2010) Stratospheric polar vortices. In: Polvani LM, Sobel AH, Waugh DW (eds) The stratosphere: dynamics, transport and chemistry. American Geophysical Union, Washington, DCGoogle Scholar
  57. White IP, Lu H, Mitchell NJ, Phillips T (2015) Dynamical response to the QBO in the Northern Winter stratosphere: signatures in wave forcing and Eddy fluxes of potential vorticity. J Atmos Sci 72:4487–4507. doi: 10.1175/JAS-D-14-0358.1 CrossRefGoogle Scholar
  58. Woo S-H, Sung M-K, Son S-W, Kug J-S (2015) Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Clim Dyn 45:3481–3492CrossRefGoogle Scholar
  59. Woollings T, Charlton-Perez A, Ineson S, Marshall AG, Masato G (2010) Associations between stratospheric variability and tropospheric blocking. J Geophys Res Atmos 115:D06108. doi: 10.1029/2009JD012742 CrossRefGoogle Scholar
  60. Wu L, Liu Z (2005) North Atlantic decadal variability: air-sea coupling, oceanic memory, and potential northern hemisphere resonance. J Clim 18(2):331–349CrossRefGoogle Scholar
  61. Zhang J, Tian W, Wang Z, Xie F, Wang F (2015) The influence of ENSO on Northern Midlatitude ozone during the winter to spring transition. J Clim 28:4774–4793CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yuanpu Li
    • 1
    • 2
  • Wenshou Tian
    • 1
  • Fei Xie
    • 3
  • Zhiping Wen
    • 2
  • Jiankai Zhang
    • 1
  • Dingzhu Hu
    • 4
  • Yuanyuan Han
    • 1
  1. 1.College of Atmospheric ScienceLanzhou UniversityLanzhouChina
  2. 2.Institute of Atmospheric SciencesFudan UniversityShanghaiChina
  3. 3.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  4. 4.Key Laboratory of Meteorological Disasters of China Ministry of EducationNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations