Climate Dynamics

, Volume 51, Issue 1–2, pp 305–319 | Cite as

The interplay of internal and forced modes of Hadley Cell expansion: lessons from the global warming hiatus

  • Dillon J. AmayaEmail author
  • Nicholas Siler
  • Shang-Ping Xie
  • Arthur J. Miller


The poleward branches of the Hadley Cells and the edge of the tropics show a robust poleward shift during the satellite era, leading to concerns over the possible encroachment of the globe’s subtropical dry zones into currently temperate climates. The extent to which this trend is caused by anthropogenic forcing versus internal variability remains the subject of considerable debate. In this study, we use a Joint EOF method to identify two distinct modes of tropical width variability: (1) an anthropogenically-forced mode, which we identify using a 20-member simulation of the historical climate, and (2) an internal mode, which we identify using a 1000-year pre-industrial control simulation. The forced mode is found to be closely related to the top of the atmosphere radiative imbalance and exhibits a long-term trend since 1860, while the internal mode is essentially indistinguishable from the El Niño Southern Oscillation. Together these two modes explain an average of 70% of the interannual variability seen in model “edge indices” over the historical period. Since 1980, the superposition of forced and internal modes has resulted in a period of accelerated Hadley Cell expansion and decelerated global warming (i.e., the “hiatus”). A comparison of the change in these modes since 1980 indicates that by 2013 the signal has emerged above the noise of internal variability in the Southern Hemisphere, but not in the Northern Hemisphere, with the latter also exhibiting strong zonal asymmetry, particularly in the North Atlantic. Our results highlight the important interplay of internal and forced modes of tropical width change and improve our understanding of the interannual variability and long-term trend seen in observations.


Hadley Cell expansion Global warming hiatus El Niño Southern Oscillation Pacific Decadal Oscillation Internal variability Global climate model 



This material is based upon work supported in part by the National Science Foundation Graduate Research Fellowship (NSF; DGE-1144086). N. S. and S. P. X. are supported by the NSF (1637450). S. P. X. is further supported by the National Key R&D Program of China (2016YFA0601804). A. J. M is supported by the NSF (OCE1419306) and the National Oceanic and Atmospheric Administration (NOAA; NA14OAR4310276). We would like to thank Sarah M. Kang and Kristopher Karnauskas for their helpful comments during the course of our study. We also thank Yu Kosaka for running the additional 10-member GFDL-CM2.1 ensemble and the 1000-year control simulation. We also express our gratitude to the World Climate Research Programme’s Working Group on Coupled Modelling, which maintains CMIP. MERRA2 Reanalysis data was provided by the NASA Global Modeling and Assimilation Office, from their web site at Finally, we’d like to thank two anonymous reviewers for comments that improved the quality of this paper.


  1. Allen RJ, Ajoku O (2016) Future aerosol reductions and widening of the northern tropical belt. J Geophys Res Atmos 121:6765–6786. doi: 10.1002/2016JD024803 CrossRefGoogle Scholar
  2. Allen RJ, Kovilakam M (2017) The role of natural climate variability in recent tropical expansion. J Clim doi: 10.1175/JCLI-D-16-0735.1 Google Scholar
  3. Allen RJ, Sherwood SC, Norris JR, Zender CS (2012) Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 485:350–354. doi: 10.1038/nature11097 CrossRefGoogle Scholar
  4. Allen RJ, Norris JR, Kovilakam M (2014) Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width. Nat Geosci 7:270–274. doi: 10.1038/ngeo2091 CrossRefGoogle Scholar
  5. Amaya DJ, Xie SP, Miller AJ, McPhaden MJ (2015) Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J Geophys Res Ocean 120:6782–6798CrossRefGoogle Scholar
  6. Archer CL, Caldeira K (2008) Historical trends in the jet streams. Geophys Res Lett 35:L08803. doi: 10.1029/2008GL033614 Google Scholar
  7. Armour KC, Marshall J, Scott JR et al (2016) Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosci 9:549–554. doi: 10.1038/ngeo2731 CrossRefGoogle Scholar
  8. Bender FAM, Ramanathan V, Tselioudis G (2012) Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Clim Dyn 38:2037–2053. doi: 10.1007/s00382-011-1065-6 CrossRefGoogle Scholar
  9. Cayan DR, Das T, Pierce DW et al (2010) Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci 107:21271–21276. doi: 10.1073/pnas.0912391107 CrossRefGoogle Scholar
  10. Chen X, Wallace JM (2015) ENSO-like variability: 1900–2013. J Clim 28:9623–9641. doi: 10.1175/JCLI-D-15-0322.1 CrossRefGoogle Scholar
  11. Chen S, Wei K, Chen W, Song L (2014) Regional changes in the annual mean hadley circulation in recent decades. J Geophys Res 119:7815–7832. doi: 10.1002/2014JD021540 Google Scholar
  12. Choi J, Son S-W, Lu J, Min S-K (2014) Further observational evidence of Hadley Cell widening in the Southern Hemisphere. Geophys Res Lett. doi: 10.1002/2014GL059426 Google Scholar
  13. CSIRO (Commonwealth Scientific and Industrial Research Organisation) (2012) Climate and water availability in South-Eastern Australia: a synthesis of findings from phase 2 of the South Eastern Australian climate initiative (SEACI). 41Google Scholar
  14. Davis NA, Birner T (2013) Seasonal to multidecadal variability of the width of the tropical belt. J Geophys Res Atmos 118:7773–7787. doi: 10.1002/jgrd.50610 CrossRefGoogle Scholar
  15. Davis SM, Rosenlof KH (2012) A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J Clim 25:1061–1078. doi: 10.1175/JCLI-D-11-00127.1 CrossRefGoogle Scholar
  16. Delworth TL, Broccoli AJ, Rosati A et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:643–674. doi: 10.1175/JCLI3629.1 CrossRefGoogle Scholar
  17. Fu Q, Lin P (2011) Poleward shift of subtropical jets inferred from satellite-observed lower-stratospheric temperatures. J Clim 24:5597–5603. doi: 10.1175/JCLI-D-11-00027.1 CrossRefGoogle Scholar
  18. Fyfe JC, Gillett NP (2014) Recent observed and simulated warming. Nat Clim Chang 4:150–151. doi: 10.1038/nclimate2111 CrossRefGoogle Scholar
  19. Fyfe JC, Meehl GA, England MH et al (2016) Making sense of the early-2000s warming slowdown. Nat Clim Chang 6:224–228. doi: 10.1038/nclimate2938 CrossRefGoogle Scholar
  20. Garfinkel CI, Waugh DW, Polvani LM (2015) Recent Hadley Cell expansion: the role of internal atmospheric variability in reconciling modeled and observed trends. Geophys Res Lett 42:10. doi: 10.1002/2015GL066942 CrossRefGoogle Scholar
  21. Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Clim 12:2113–2123. doi: 10.1175/1520-0442(1999)012<2113:IEAIEL>2.0.CO;2 CrossRefGoogle Scholar
  22. Gelaro R, McCarty W, Suárez MJ et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30(14):5419–5454CrossRefGoogle Scholar
  23. Grassi B, Redaelli G, Canziani PO, Visconti G (2012) Effects of the PDO phase on the tropical belt width. J Clim 25:3282–3290. doi: 10.1175/JCLI-D-11-00244.1 CrossRefGoogle Scholar
  24. Hansen J, Sato M, Kharecha P, Von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449. doi: 10.5194/acp-11-13421-2011 CrossRefGoogle Scholar
  25. Hoerling M, Eischeid J, Perlwitz J et al (2012) On the increased frequency of mediterranean drought. J Clim 25:2146–2161. doi: 10.1175/JCLI-D-11-00296.1 CrossRefGoogle Scholar
  26. Horel JD, Wallace JM (1981) Planetary-scale phenomena associated with the Southern Oscillation.Mon Wea Rev 109:813–829. doi: 10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2 CrossRefGoogle Scholar
  27. Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys Discuss 7:9367–9384. doi: 10.5194/acpd-7-9367-2007 CrossRefGoogle Scholar
  28. Hu Y, Tao L, Liu J (2013) Poleward expansion of the hadley circulation in CMIP5 simulations. Adv Atmos Sci 30:790–795. doi: 10.1007/s00376-012-2187-4 CrossRefGoogle Scholar
  29. Hwang Y-T, Xie S-P, Deser C, Kang SM (2017) Connecting tropical climate change with southern ocean heat uptake. Geophys Res Lett 44. doi: 10.1002/2017GL074972
  30. Johanson CM, Fu Q (2009) Hadley Cell widening: model simulations versus observations. J Clim 22:2713–2725. doi: 10.1175/2008JCLI2620.1 CrossRefGoogle Scholar
  31. Kang SM, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of Polar Ozone Depletion on Subtropical Precipitation. Science 332:951–954. doi: 10.1126/science.1202131 CrossRefGoogle Scholar
  32. Karnauskas KB, Ummenhofer CC (2014) On the dynamics of the Hadley circulation and subtropical drying. Clim Dyn 42:2259–2269. doi: 10.1007/s00382-014-2129-1 CrossRefGoogle Scholar
  33. Kay JE, et al. (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349. doi: 10.1175/BAMS-D-13-00255.1 CrossRefGoogle Scholar
  34. Kim YH, Min SK, Son SW, Choi J (2017) Attribution of the local Hadley Cell widening in the Southern Hemisphere. Geophys Res Lett 44:1015–1024. doi: 10.1002/2016GL072353 CrossRefGoogle Scholar
  35. Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407. doi: 10.1038/nature12534 CrossRefGoogle Scholar
  36. Kosaka Y, Xie S-P (2016) The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat Geosci 9:669–673. doi: 10.1038/ngeo2770 CrossRefGoogle Scholar
  37. Kovilakam M, Mahajan S (2015) Black carbon aerosol-induced Northern Hemisphere tropical expansion. Geophys Res Lett 42:4964–4972. doi: 10.1002/2015GL064559 CrossRefGoogle Scholar
  38. Li C, von Storch JS, Marotzke J (2013) Deep-ocean heat uptake and equilibrium climate response. Clim Dyn 40:1071–1086. doi: 10.1007/s00382-012-1350-z CrossRefGoogle Scholar
  39. Lu J, Chen G, Frierson DMW (2008) Response of the zonal mean atmospheric circulation to El Niño versus global warming. J Clim 21:5835–5851. doi: 10.1175/2008JCLI2200.1 CrossRefGoogle Scholar
  40. Lucas C, Nguyen H (2015) Regional charachteristics of tropical expansion and the role of climate variability. J Geophys Res Atmos 120:1–16. doi: 10.1002/2015JD023130.Received Google Scholar
  41. Lucas C, Timbal B, Nguyen H (2014) The expanding tropics: a critical assessment of the observational and modeling studies. Wiley Interdiscip Rev Clim Chang 5:89–112. doi: 10.1002/wcc.251 CrossRefGoogle Scholar
  42. Mantsis DF, Sherwood S, Allen RJ, Shi L (2017) Natural variations of tropical width and recent trends. Geophys Res Lett. doi: 10.1002/2016GL072097 Google Scholar
  43. Min SK, Son SW (2013) Multimodel attribution of the Southern Hemisphere Hadley Cell widening: major role of ozone depletion. J Geophys Res Atmos 118:3007–3015. doi: 10.1002/jgrd.50232 CrossRefGoogle Scholar
  44. Morales MS, Christie DA, Villalba R et al (2012) Precipitation changes in the South American Altiplano since 1300AD reconstructed by tree-rings. Clim Past 8:653–666. doi: 10.5194/cp-8-653-2012 CrossRefGoogle Scholar
  45. Nguyen H, Evans A, Lucas C et al (2013) The hadley circulation in reanalyses: climatology, variability, and Change. J Clim 26:3357–3376. doi: 10.1175/JCLI-D-12-00224.1 CrossRefGoogle Scholar
  46. Polvani LM, Previdi M, Deser C (2011a) Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys Res Lett. doi: 10.1029/2011GL046712 Google Scholar
  47. Polvani LM, Waugh DW, Correa GJP, Son S-W (2011b) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the southern hemisphere. J Clim 24:795–812. doi: 10.1175/2010JCLI3772.1 CrossRefGoogle Scholar
  48. Previdi M, Liepert BG (2007) Annular modes and Hadley Cell expansion under global warming. Geophys Res Lett. doi: 10.1029/2007GL031243 Google Scholar
  49. Robinson WA (2002) On the midlatitude thermal response to tropical warmth. Geophys Res Lett 29:31. doi: 10.1029/2001GL014158 CrossRefGoogle Scholar
  50. Seager R, Harnik N, Kushnir Y, et al (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16:2960–2978. doi: 10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2 CrossRefGoogle Scholar
  51. Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668. doi: 10.1175/2010JCLI3655.1 CrossRefGoogle Scholar
  52. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111:D21101. doi: 10.1029/2006JD007363 CrossRefGoogle Scholar
  53. Seidel D, Fu Q, Randel W, Reichler T (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24. doi: 10.1038/ngeo.2007.38 CrossRefGoogle Scholar
  54. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi: 10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  55. Sousa PM, Trigo RM, Aizpurua P et al (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazards Earth Syst Sci 11:33–51. doi: 10.5194/nhess-11-33-2011 CrossRefGoogle Scholar
  56. Sterl A (2004) On the (in)homogeneity of reanalysis products. J Clim 17:3866–3873. doi: 10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2 CrossRefGoogle Scholar
  57. Stocker TF et al (2013) IPCC, 2013: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  58. Takahashi C, Watanabe M (2016) Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat Clim Chang 6:768–774. doi: 10.1038/nclimate2996 CrossRefGoogle Scholar
  59. Tao L, Hu Y, Liu J (2016) Anthropogenic forcing on the H circulation in CMIP5 simulations. Clim Dyn 46:3337–3350. doi: 10.1007/s00382-015-2772-1 CrossRefGoogle Scholar
  60. Trenberth KE, Stepaniak DP, Hurrell JW, et al (2001) Quality of reanalyses in the tropics. J Clim 14:1499–1510. doi: 10.1175/1520-0442(2001)014<1499:QORITT>2.0.CO;2 CrossRefGoogle Scholar
  61. Wang H, Xie S-P, Tokinaga H et al (2016) Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing. Geophys Res Lett 43:3444–3450. doi: 10.1002/2016GL068521 CrossRefGoogle Scholar
  62. Watanabe M, Shiogama H, Tatebe H et al (2014) Contribution of natural decadal variability to global warming acceleration and hiatus. Nat Clim Chang 4:893–897. doi: 10.1038/nclimate2355 CrossRefGoogle Scholar
  63. Waugh DW, Garfinkel CI, Polvani LM et al (2015) Drivers of the recent tropical expansion in the southern hemisphere: changing SSTs or ozone depletion? J Clim 28:6581–6586. doi: 10.1175/JCLI-D-15-0138.1 CrossRefGoogle Scholar
  64. WMO (World Meteorological Organization) (1957) Meteorology—a three-dimensional science. Second session of the Commission for Aerology. WMO Bulletin IV, no 4. WMO, Geneva, pp 134–138Google Scholar
  65. Xie S-P, Kosaka Y (2017) What caused the global surface warming hiatus of 1998–2013? Curr Clim Chang Reports 3:128–140. doi: 10.1007/s40641-017-0063-0 CrossRefGoogle Scholar
  66. Ye JS (2014) Trend and variability of China’s summer precipitation during 1955–2008. Int J Climatol 34:559–566. doi: 10.1002/joc.3705 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Scripps Institution of OceanographyUniversity of California-San DiegoLa JollaUSA

Personalised recommendations