Climate Dynamics

, Volume 51, Issue 1–2, pp 221–233 | Cite as

Simultaneous observations of the quasi 2-day wave climatology over the low and equatorial latitudes in the mesosphere lower thermosphere

  • Karanam Kishore KumarEmail author
  • Kandula Venkata Subrahmanyam
  • Sneha Susan Mathew
  • N. Koushik
  • Geetha Ramkumar


Simultaneous observations of the mesosphere lower thermosphere (MLT) winds in the 80–100 km height region over a low-latitude station Thumba (8.5°N, 77°E) and an equatorial station Kototabang (0.2°S, 100.3°E) during 2006–2012 are used to study the climatology of mean winds and the quasi 2-day waves (QTDW). The 7 year mean annual cycle of the zonal and meridional winds and their interannual variability over both the observational sites are discussed in details. A remarkable agreement is noticed in the annual cycle of zonal winds over both the sites, whereas some discrepancies are observed in the meridional winds. The hourly meridional winds are analyzed to extract the day-to-day variability of the QTDW and their monthly mean. The climatology of the QTDW in the meridional winds over both the sites shows very good agreement, with three peaks in wave activity during austral summer, boreal summer and in the month of October. It is noted that the peak observed in the month of October is not very distant from the boreal summer peak. These three peaks are consistently observed in all years, with strong interannual variability. In general, the austral summer QTDW activity is the strongest among the three over both the observational sites. Apart from discussing the mean and interannual variability of the QTDW over both the sites, instantaneous occurrence of the QTDW over both the sites is further analyzed to infer their zonal wavenumbers. The wavelet analysis is employed to extract time evolution of the QTDW simultaneously over both the sites and the same is used to infer the zonal wavenumbers. The results from the case studies show that the observed QTDW during austral summer (January 2012), boreal summer (July–August 2008) and October month (October 2006) are westward propagating waves with zonal wavenumbers 3, 4 and 2, respectively. Further analysis using simultaneous space based observations are essential for generalizing the observed seasonal variations in the zonal wavenumbers. The significance of the present results lies in using the simultaneous observations of the MLT winds over the low and equatorial latitudes to bring out the climatology, interannual variability and the zonal wavenumbers of the QTDW. The result discussed in the present study adds to the current understanding of the QTDW, especially by inferring the zonal wavenumbers using ground based observations.



Sneha Susan Mathew and N. Koushik gratefully acknowledge the financial support and research opportunity provided by Indian Space Research Organization (ISRO) for their work. Data acquisition of meteor wind radar at Kototabang has been done by Research Institute for Sustainable Humanosphere (RISH), Kyoto University. Distribution of the data has been partly supported by the IUGONET(Inter-university Upper atmosphere Global Observation NETwork) project ( funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.


  1. Antonita TM, Ramkumar G, Kumar KK, Deepa V (2008) Meteor wind radar observations of gravity wave momentum fluxes and their forcing toward the mesospheric semiannual oscillation. J Geophys Res 113:D10115. doi. 10.1029/2007JD009089 CrossRefGoogle Scholar
  2. Baumgaertner A, McDonald A, Hibbins R, Fritts D, Murphy D, Vincent R (2008) Short-period planetary waves in the Antarctic middle atmosphere. J Atmos Solar Terr Phys 70:1336–1350. doi: 10.1016/j.jastp.2008.04.007 CrossRefGoogle Scholar
  3. Ern M, Preusse P, Kalisch S, Kaufmann M, Riese M (2013) Role of gravity waves in the forcing of quasi two-day waves in themesosphere: an observational study. J Geophys Res Atmos 118:3467–3485. doi: 10.1029/2012JD018208 CrossRefGoogle Scholar
  4. Gu SY, Li T, Dou X, Wu Q, Mlynczak MG, Russell JM (2013) Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI. J Geophys Res Atmos 118:1624–1639. doi: 10.1002/jgrd.50191 CrossRefGoogle Scholar
  5. Gurubaran S, Sridharan S, Ramkumar TK, Rajaram R (2001) The mesospheric quasi-2-day wave over Tirunelveli (8.7°N). J Atmos Solar Terr Phys 63:975–985. doi: 10.1016/S1364-6826(01)00016-5 CrossRefGoogle Scholar
  6. Harris TJ, Vincent RA (1993) The quasi-2-day wave observed in the equatorial middle atmosphere. J Geophys Res Atmos 98:10481–10490. doi: 10.1029/93JD00380 CrossRefGoogle Scholar
  7. Hocking WK, Fuller B, Vandepeer B (2001) Real-time determination of meteor-related parameters utilizing modern digital technology. J Atmos Sol-Terr Phy 63:155–169. doi: 10.1016/S1364-6826(00)00138-3 CrossRefGoogle Scholar
  8. John SR, Kumar KK (2016) Global normal mode planetary wave activity: a study using TIMED/SABER observations from the stratosphere to the mesosphere-lower thermosphere. Clim Dyn. doi: 10.1007/s00382-016-3046-2 Google Scholar
  9. Kishore Kumar G, Kumar KK, Singer W, Zülicke C, Gurubaran S, Baumgarten G, Ramkumar G, Sathishkumar S, Rapp M (2014) Mesosphere and lower thermosphere zonal wind variations over low latitudes: relation to local stratospheric zonal winds and global circulation anomalies. J Geophy Res. doi: 10.1002/2014JD021610 Google Scholar
  10. Kumar KK, Ramkumar G, Shelbi TS (2007a) Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E), 1. Comparison of wind measurements with MF spaced antenna radar system. Radio Sci 42:RS6008. doi: 10.1029/2006RS003551 Google Scholar
  11. Kumar KK, Antonita TM, Shelbi TS (2007b) Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2.Gravity wave observations in the MLT region. Radio Sci 42:RS600. doi: 10.1029/2006RS003553 Google Scholar
  12. Kumar KK, Deepa V, Antonita TM, Ramkumar G (2008) Meteor radar observations of short-term tidal variabilities in the low-latitude mesosphere-lower thermosphere: evidence for non-linear wave-wave interactions. J Geophy Res 113:D16108. doi:  10.1029/2007JD009610 CrossRefGoogle Scholar
  13. Lima LM, Batista PP, Takahashi H, Clemesha BR (2004) Quasi-two-day wave observed by meteor radar at 22.7°S. J Atmos Sol Terr Phys 66(6–9):529–537. doi: 10.1016/j.jastp.2004.01.007 CrossRefGoogle Scholar
  14. Lima LM, Medeiros AF, Buriti RA, Batista PP, Clemesha BR, Takahashi H (2007) Mesospheric 2-Day waves observed simultaneously in the equatorial and low latitudes regions of Brazil. Revista Brasileira de Geofísica 25:43–48. doi: 10.1590/S0102-261X2007000600006 CrossRefGoogle Scholar
  15. Limpasuvan V, Wu DL (2009) Anomalous two-day wave behavior during the 2006 austral summer. Geophys Res Lett 36:L04807. doi: 10.1029/2008GL036387 CrossRefGoogle Scholar
  16. McCormack JP, Coy L, Singer W (2014) Intraseasonal and interannual variability of the quasi 2 day wave in the Northern Hemisphere summer mesosphere. J Geophys Res Atmos 119:2928–2946. doi: 10.1002/2013JD020199 CrossRefGoogle Scholar
  17. Muller HG (1972) Long-period meteor wind oscillation. Philos T Roy Soc A 271:585–598. doi: 10.1098/rsta.1972.0026 CrossRefGoogle Scholar
  18. Muller HG, Nelson L (1978) A traveling quasi-two-day wave in the meteor region. J Atmos Terr Phys 40:761–766. doi: 10.1016/0021-9169(78)90136-8 CrossRefGoogle Scholar
  19. Norton WA, Thuburn J (1996) The two-day wave in a middle atmosphere GCM. Geophys Res Lett 23:2113–2116. doi: 10.1029/96GL01956 CrossRefGoogle Scholar
  20. Offermann D, Hoffmann P, Knieling P, Koppmann R, Oberheide J, Riggin DM, Tunbridge VM, Steinbrecht W (2011) Quasi 2 day waves in the summer mesosphere: Triple structure of amplitudes and long-term development. J Geophys Res 116:D00P02. doi: 10.1029/2010JD015051 Google Scholar
  21. Pancheva D, Mukhtarov P, Mitchell NJ, Merzlyakov E, Smith AK, Andonov B, Singer W, Hocking W, Meek C, Manson A, Murayama Y (2008) Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. J Geophys Res 113:D12105. doi: 10.1029/2007JD009011 CrossRefGoogle Scholar
  22. Pancheva D, Mukhtarov P, Siskind DE, Smith AK (2016), Global distribution and variability of quasi 2 day waves based on the NOGAPS-ALPHA reanalysis model., J Geophys Res Sp Phys 121:11422–11449. doi: 10.1002/2016JA023381 CrossRefGoogle Scholar
  23. Plumb RA (1983) Baroclinic instability of the summer mesosphere, a mechanism for the quasi-two-day wave? J Atmos Sci 40:262–270. doi: 10.1175/1520-0469 CrossRefGoogle Scholar
  24. Randel WJ (1994) Observations of the 2-day wave in NCM stratospheric analyses. J Atmos Sci 51(2):306–313. doi: 10.1175/1520-0469(1994)051<0306:OOTDWI>2.0.CO;2 CrossRefGoogle Scholar
  25. Rao NV, VenkatRatnam M, Vedavathi C, Tsuda T, Krishna Murthy BV, Sathishkumar S, Gurubaran S, Kishore Kumar K, Subrahmanyam KV, VijayaBhaskaraRao S (2017) Seasonal, inter-annual and solar cycle variability of the quasi two day wave in the low-latitude mesosphere and lower thermosphere. J Atmos Sol Terr Phys 152:20–29. doi: 10.1016/j.jastp.2016.11.005 CrossRefGoogle Scholar
  26. Salby ML (1981) The 2-day wave in the middle atmosphere: observations and theory. J Geophys Res 86(C10):9654–9660. doi: 10.1029/JC086iC10p09654 CrossRefGoogle Scholar
  27. Salby ML (1984) Survey of planetary-scale traveling waves: the state of theory and observations. Rev Geophys 22(2):209–236. doi: 10.1029/RG022i002p00209 CrossRefGoogle Scholar
  28. Salby ML, Callaghan PF (2001) Seasonal amplification of the 2-day wave: relationship between normal mode and instability. J Atmos Sci 58(14):1858–1869. doi: 10.1175/1520-0469(2001)058<1858:SAOTDW>2.0.CO;2 CrossRefGoogle Scholar
  29. Suresh Babu V, Kishore Kumar K, John SR, Subrahmanyam KV, Ramkumar G (2011) Meteor radar observations of short-term variability of quasi 2 day waves and their interaction with tides and planetary waves in the mesosphere–lower thermosphere region over Thumba (8.5°N, 77°E). J Geophys Res 116:D16121.doi: 10.1029/2010JD015390 CrossRefGoogle Scholar
  30. Tunbridge VM, Sandford DJ, Mitchell NJ (2011) Zonal wavenumbers of the summertime 2 day planetary wave observed in the mesosphere by EOS Aura Microwave Limb Sounder. J Geophys Res 116:D11103. doi: 10.1029/2010JD014567 CrossRefGoogle Scholar
  31. Volland H (1988) Atmospheric tidal and planetary waves. Springer, Netherlands. ISBN 978-94-009-2861-9. doi: 10.1007/978-94-009-2861-9 CrossRefGoogle Scholar
  32. Walterscheid RL, Hecht JH, Gelinas LJ, MacKinnon A, Vincent RA, Reid IM, Franke SJ, Zhao Y, Taylor MJ, Pautet PD (2015) Simultaneous observations of the phase-locked 2 day wave at Adelaide, Cerro Pachon, and Darwin. J Geophys Res 120:1808–1825. doi: 10.1002/2014JD022016 CrossRefGoogle Scholar
  33. Wu DL, Hays PB, Skinner WR, Marshal AR, Burrage MD, Liebermann RS, Ortland DA (1993) Observations the quasi 2-day wave from the high resolution Doppler imager on UARS. Geophys Res Lett 20:2853–2856. doi: 10.1029/93GL03008 CrossRefGoogle Scholar
  34. Wu DL, Hays PB, Skinner WR (1995) A least squares method for spectral analysis of space-time series. J Atmos Sci 52(20):3501–3511. doi: 10.1175/1520-0469(1995)052<3501:ALSMFS>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Karanam Kishore Kumar
    • 1
    Email author
  • Kandula Venkata Subrahmanyam
    • 1
  • Sneha Susan Mathew
    • 1
  • N. Koushik
    • 1
  • Geetha Ramkumar
    • 1
  1. 1.Space Physics LaboratoryVikram Sarabhai Space CentreThiruvananthepuramIndia

Personalised recommendations