Climate Dynamics

, Volume 50, Issue 11–12, pp 4437–4453 | Cite as

Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

  • Florian Raymond
  • Albin Ullmann
  • Pierre Camberlin
  • Boutheina Oueslati
  • Philippe Drobinski


Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian “blocking” or “East-Atlantic”, and the “Atlantic ridge”. Only the The “East-Atlantic”, “Atlantic ridge” and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions


Extreme dry spells Wet season Mediterranean Atmospheric conditions Weather regimes HyMeX 



This work is a contribution to the HYdrological cycle in The Mediterranean EXperiment (HyMeX) program, through INSU-MISTRALS support. The authors are grateful to Marc Stéfanon for providing his heatwave identification processing software, which has been adapted to the context of droughts. We acknowledge the E-OBS data set from the EU-FP6 project ENSEMBLES ( and the data providers in the ECA&D project ( The NCEP/NCAR Re-analysis data used in this study were obtained from the Earth System Research Laboratory/National Oceanic and Atmospheric Administration data server (


  1. Bauweraerts I, Wertin TM, Ameye M, McGuire MA, Teskey RO, Steppe K (2013) The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus Rubra L.) seedlings. Glob Change Biol 19:517–528CrossRefGoogle Scholar
  2. Beck C, Philipp A, Streicher F (2016) The effect of domain size on the relationship between circulation type classifications and surface climate. Int J Climatol 36:2692–2709CrossRefGoogle Scholar
  3. Brönnimann S (2007) Impact of El Niño–southern oscillation on european climate. Rev Geophy 45:RG3003. doi: 10.1029/2006RG000199 CrossRefGoogle Scholar
  4. Brönnimann S, Xoplaki E, Casty C, Pauling A, Luterbacher J (2007) ENSO influence on Europe during the last centuries. Clim Dyn 28(2–3):181–197Google Scholar
  5. Cassou C (2004) Du changement climatique aux régimes de temps: loscillation nord-atlantique. Météorologie 45:21–32CrossRefGoogle Scholar
  6. Cassou C, Terray L (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811CrossRefGoogle Scholar
  7. Cassou C, Terray L, Hurrell J, Deser C (2004) North Atlantic climate regimes: spatial asymmetry, stationarity with time, and oceanic forcing. J Clim 17:1055–3363CrossRefGoogle Scholar
  8. Cattiaux J, Douville H, Peings Y (2013) European temperatures in CMIP5: origins of present-day biases and future uncertainties. Clim Dyn 41:2889–2907CrossRefGoogle Scholar
  9. Cattiaux J, Quesada B, Arakelian A, Codron F, Vautard R, Yiou P (2012) North-Atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution. Clim Dyn 40:2293–2310CrossRefGoogle Scholar
  10. Cindric K, Prtenjak MT, Herceg-Bulic I, Mihajlovic D, Pasaric Z (2016) Analysis of the extraordinary 2011/2012 drought in Croatia. Theor Appl Climatol 123:503–522CrossRefGoogle Scholar
  11. Diday E, Simon JC (1976) Clustering analysis. Commun Cybern 10:47–49Google Scholar
  12. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubisic V, Gualdi S, Homar V, Ivancan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX, a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082CrossRefGoogle Scholar
  13. Dünkeloh A, Jacobeit J (2003) Circulation dynamics of Mediterranean precipitation variability 1948–98. Int J Climatol 23:1843–1866CrossRefGoogle Scholar
  14. Eden C, Jung T (2000) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14:676–691CrossRefGoogle Scholar
  15. Ferranti L, Viterbo P (2006) The European summer of 2003: sensitivity to soil water initial conditions. J Clim 19:3659–3680CrossRefGoogle Scholar
  16. Gaetani M, Baldi M, Dalu G-A, Maracchi G (2011) Jetstream and rainfall distribution in the Mediterranean region. Nat Hazards Earth Syst Sci 11:2469–2481CrossRefGoogle Scholar
  17. Garcia-Herrera R, Paredes D, Trigo RM, Franco Trigo I, Hernandez E, Barriopedro D, Mendez MA (2007) The outstanding 2004/05 drought in the Iberian Peninsula: associated atmospheric circulation. J Hydrometeorol 8:483–498CrossRefGoogle Scholar
  18. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119CrossRefGoogle Scholar
  19. Hu Z-Z, Kumar A, Huang B, Xue Y, Wang W, Jha B (2011) Persistent atmospheric and oceanic anomalies in the North Atlantic from summer 2009 to summer 2010. J Clim 24:5812–5830CrossRefGoogle Scholar
  20. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  21. Hurrell JW, Van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326CrossRefGoogle Scholar
  22. Hurrell J, Kushnir Y, Ottersen G, Visbeck M (eds) (2003) The North Atlantic Oscillation: climatic significance and environmental impact. In: Geophysical monograph series, vol 134. AGUE, Washington, DC, 279 pGoogle Scholar
  23. Huth R (1996) An intercomparison of computer-assisted circulation classification methods. Int J Climatol 16:893–922CrossRefGoogle Scholar
  24. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, CambridgeGoogle Scholar
  25. Iqbal MJ, Hameed S, Khan F (2013) Influence of Azores high pressure on Middle Eastern rainfall. Theor Appl Climatol 111:211–221CrossRefGoogle Scholar
  26. Jacobsen SE, Jensen CR, Liu F (2012) Improving crop production in the arid Mediterranean climate. Field Crops Res 128:34–47CrossRefGoogle Scholar
  27. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  28. Kelley C, Ting M, Seager R, Kushnir Y (2012) The relative contribution of radiative forcing and internal climate variability to the late 20th century winter drying of the Mediterranean region. Clim Dyn 38:2001–2015CrossRefGoogle Scholar
  29. Kiehl JT, Trenberth KE (1997) Earths annual global mean energy budget. Bull Am Meteorol Soc 78:197–208CrossRefGoogle Scholar
  30. Klok EJ, Klein Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191CrossRefGoogle Scholar
  31. Maheras P, Xoplaki E, Kutiel H (1999) Wet and dry monthly anomalies across the Mediterranean Basin and their relationship with circulation, 1860–1990. Theor Appl Climatol 64:189–1999CrossRefGoogle Scholar
  32. Mariotti A, Zeng N, Lau K-M (2002) Euro-Mediterranean rainfall and ENSO—a seasonally varying relationship. Geophys Res Lett 29(12): 59-1–59-4Google Scholar
  33. Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52:1237–1256CrossRefGoogle Scholar
  34. Msadek R, Frankignoul C, Li L (2011) Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study. Clim Dyn 36:1255–1276CrossRefGoogle Scholar
  35. Oikonomou C, Flocas HA, Hatzaki M, Nisantzi A, Asimakopoulos DN (2010) Relationship of extreme dry spells in Eastern Mediterranean with large-scale circulation. Theor Appl Climatol 100:137–151CrossRefGoogle Scholar
  36. Peings Y, Magnusdottir G (2014) Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ Res Lett 9(3):034018CrossRefGoogle Scholar
  37. Plan Bleu (2014) EAU: Gestion de la demande, Approche économique de la gestion de la demande en eau en Méditerran, Instruments économiques. ACTeon, cahier 15, pp 82Google Scholar
  38. Plaut G, Simonnet E (2001) Large-scale circulation classification, weather regimes and local climate over France, the Alps and Western Europe. Clim Res 17:303–324CrossRefGoogle Scholar
  39. Raymond F, Ullmann A, Camberlin P, Drobinski P, Chateau Smith C (2016) Extreme dry spell detection and climatology over the Mediterranean Basin during the wet season. Geophys Res Lett 43:7196–7204CrossRefGoogle Scholar
  40. Ruti P, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Raznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloche S, Brauch J, Cabos W, Calmanti S, Calvet JC, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde A, Gaertner M, Galan P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jorda G, Lheveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Macias-Moy D, Onol B, Rajkovic B, Ramage K, Sevault F, Sannino G, Struglia MV, Sanna A, Torma C, Vervatis V (2015) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-14-00176.1 (online published)
  41. Saaroni H, Ziv B, Lempert J, Gazit Y, Morin E (2015) Prolonged dry spells in the Levant region: climatologic-synoptic analysis. Int J Climatol 35:2223–2236CrossRefGoogle Scholar
  42. Sanchez-Gomez E, Terray L (2005) Large-scale atmospheric dynamics and local intense precipitation episodes. Geophys Res Lett 32:L24711CrossRefGoogle Scholar
  43. Shongwe ME, Graversen RG, Van Oldengorgh GJ, Van den Huerk BJJM, Doblas-Reyes FJ (2001) Energy budget of the extreme Autumn 2006 in Europe. Clim Dyn 36:1055–1066CrossRefGoogle Scholar
  44. Stefanon M, Drobinski P, D’Andrea F, Lebeaupin-Brossier C, Bastin S (2014a) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim Dyn 42:1309–1324CrossRefGoogle Scholar
  45. Stefanon M, Schindler S, Drobinski P, Noblet-Ducoudr N, D’Andrea F (2014b) Simulating the effetc of anthropogenic vegetation land cover on heatwave tempratures over central France. Clim Res 60:133–146CrossRefGoogle Scholar
  46. Stefanon M, D’Andrea F, Drobinski P (2012a) Heatwave classification over Europe and the Mediterranean region. Environ Res Lett 7:14–23CrossRefGoogle Scholar
  47. Stefanon M, Drobinski P, D’Andrea F, Noblet-Ducoudr N (2012b) Effects of interactive vegetation phenology on the 2003 summer heat waves. J Geophys Res 117:D24103CrossRefGoogle Scholar
  48. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  49. Törnros T (2010) Precipitation trends and suitable drought index in the arid/semi-arid southeastern Mediterranean region. In: Proc. of the sixth World FRIEND conference, Fez, Morocco, October 2010. IAHS Publ 340:157–163Google Scholar
  50. Ullmann A, Fontaine B, Roucou P (2014) Euto-Atlantic weather regimes and Mediterranean rainfall patterns: present-day variability and expected changes under CMIP5 projections. Int J Climatol 34:2634–2650CrossRefGoogle Scholar
  51. Ullmann A, Moron V (2008) Weather regimes and sea surges variations over the Gulf of Lions (French Mediterranean coast) during the 20th century. Int J Climatol 28:159–171CrossRefGoogle Scholar
  52. Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Weather Rev 118:2056–2081CrossRefGoogle Scholar
  53. Wang D, Heckathorn SA, Barua D, Joshi P, Hamilton EW, Lacroix JJ (2008) Effects of elevated CO\({_2}\) on the tolerance of photosynthesis to acute heat stress in C3, C4 and CAM species. Am J Bot 92:165–176CrossRefGoogle Scholar
  54. Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78CrossRefGoogle Scholar
  55. Yiou P, Nogaj M (2004) Extreme climatic events and weather regimes over the North Atlantic: when and where? Geophys Res Lett 31:L07202CrossRefGoogle Scholar
  56. Zampieri M, D’Andrea F, Vautard D, Ciais P, De Noblet-Ducoudre N, Yiou P (2009) Hot European summers and the role of soil moisture in the propagation of Mediterranean drought. J Clim 22:4747–4758CrossRefGoogle Scholar
  57. Zanchettin D, Franks S-W, Traverso P, Tomasino M (2008) On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multidecadal variability described through the PDO index. Int J Climatol 28:995–1006CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Centre de Recherches de Climatologie, BiogéosciencesUniversité de Bourgogne Franche-ComtéDijonFrance
  2. 2.LSCE/IPLSLaboratoire CEA/CNRS/UVSQGif/YvetteFrance
  3. 3.Laboratoire de Météorologie Dynamique Institut Pierre Simon Laplace, CNRSÉcole Polytechnique Université Pierre et Marie CuriePalaiseauFrance

Personalised recommendations