Climate Dynamics

, Volume 50, Issue 11–12, pp 4425–4436 | Cite as

How to reduce long-term drift in present-day and deep-time simulations?

  • Maura Brunetti
  • Christian Vérard


Climate models are often affected by long-term drift that is revealed by the evolution of global variables such as the ocean temperature or the surface air temperature. This spurious trend reduces the fidelity to initial conditions and has a great influence on the equilibrium climate after long simulation times. Useful insight on the nature of the climate drift can be obtained using two global metrics, i.e. the energy imbalance at the top of the atmosphere and at the ocean surface. The former is an indicator of the limitations within a given climate model, at the level of both numerical implementation and physical parameterisations, while the latter is an indicator of the goodness of the tuning procedure. Using the MIT general circulation model, we construct different configurations with various degree of complexity (i.e. different parameterisations for the bulk cloud albedo, inclusion or not of friction heating, different bathymetry configurations) to which we apply the same tuning procedure in order to obtain control runs for fixed external forcing where the climate drift is minimised. We find that the interplay between tuning procedure and different configurations of the same climate model provides crucial information on the stability of the control runs and on the goodness of a given parameterisation. This approach is particularly relevant for constructing good-quality control runs of the geological past where huge uncertainties are found in both initial and boundary conditions. We will focus on robust results that can be generally applied to other climate models.


Tuning Energy budget GCM Paleoclimate 



The computations were performed at University of Geneva on the Baobab and CLIMDAL3 clusters. We thank Jean-Michel Campin, Marjorie Perroud and Martin Beniston for useful discussions, and the MITgcm-support mailing list for valuable advice on the code. This work was partly supported by CTI 15574.1 PFES-ES.


  1. Adcroft A, Campin JM, Hill C, Marshall J (2004) Implementation of an Atmosphere ocean general circulation model on the expanded spherical cube. Mon Weather Rev 132:2845. doi: 10.1175/MWR2823.1 CrossRefGoogle Scholar
  2. Anderson DE, Cahalan RF (2005) The solar radiation and climate experiment (SORCE) mission for the NASA earth observing system (EOS). Solar Phys 230:3–6CrossRefGoogle Scholar
  3. Braconnot P, Harrison SP, Otto-Bliesner B, Abe-Ouchi A, Jungclaus J, Peterschmitt JY (2011) The paleoclimate modeling intercomparison project contribution to CMIP5. CLIVAR Exch No 56(16):15–19Google Scholar
  4. Brunetti M, Vérard C, Baumgartner PO (2015) Modeling the middle jurassic ocean circulation. J Palaeogeogr 4:373–386CrossRefGoogle Scholar
  5. Campin JM, Marshall J, Ferreira D (2008) Sea ice-ocean coupling using a rescaled vertical coordinate z*. Ocean Model 24:1–14. doi: 10.1016/j.ocemod.2008.05.005 CrossRefGoogle Scholar
  6. Covey C, Gleckler PJ, Phillips TJ, Bader DC (2006) Secular trends and climate drift in coupled ocean-atmosphere general circulation models. J Geophys Res 111(D03):107. doi: 10.1029/2005JD006009 Google Scholar
  7. Fasullo JT, Trenberth KE (2008) The annual cycle of the energy budget. Part II: meridional structures and poleward transports. J Clim 21:2313. doi: 10.1175/2007JCLI1936.1 CrossRefGoogle Scholar
  8. Freire JG, Bonatto C, DaCamara CC, Gallas JAC (2008) Multistability, phase diagrams, and intransitivity in the Lorenz-84 low-order atmospheric circulation model. Chaos 18(3):033121. doi: 10.1063/1.2953589 CrossRefGoogle Scholar
  9. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–160CrossRefGoogle Scholar
  10. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991. doi: 10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  11. Golaz JC, Golaz JC, Levy H (2013) Cloud tuning in a coupled climate model: impact on 20th century warming. Geophys Res Lett 40:2246–2251. doi: 10.1002/grl.50232 CrossRefGoogle Scholar
  12. Gregoire LJ, Valdes PJ, Payne AJ, Kahana R (2011) Optimal tuning of a GCM using modern and glacial constraints. Clim Dyn 37(3):705–719. doi: 10.1007/s00382-010-0934-8 CrossRefGoogle Scholar
  13. Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Ruedy R, Travis L (1983) Efficient three-dimensional global models for climate studies: model I and II. Month Weather Rev 111:609–662CrossRefGoogle Scholar
  14. Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13,421–13,449. doi:10.5194/acp-11-13421-2011Google Scholar
  15. Hobbs W, Palmer MD, Monselesan D (2016) An energy conservation analysis of ocean drift in the CMIP5 global coupled models*. J Clim 29:1639–1653. doi: 10.1175/JCLI-D-15-0477.1 CrossRefGoogle Scholar
  16. Hourdin F, Mauritsen T, Gettelman A, Golaz J, Balaji V, Duan Q, Folini D, Ji D, Klocke D, Qian Y, Rauser F, Rio C, Tomassini L, Watanabe M, Williamson D (2017) The art and science of climate model tuning. Bull Am Meteorol Soc 98:589–602. doi: 10.1175/BAMS-D-15-00135.1 CrossRefGoogle Scholar
  17. Howell FW, Haywood AM, Otto-Bliesner BL, Bragg F, Chan WL, Chandler MA, Contoux C, Kamae Y, Abe-Ouchi A, Rosenbloom NA, Stepanek C, Zhang Z (2016) Arctic sea ice simulation in the PlioMIP ensemble. Clim Past 12:749–767. doi: 10.5194/cp-12-749-2016 CrossRefGoogle Scholar
  18. Irvine PJ, Gregoire LJ, Lunt DJ, Valdes PJ (2013) An efficient method to generate a perturbed parameter ensemble of a fully coupled aogcm without flux-adjustment. Geosci Model Devel 6:1447–1462. doi: 10.5194/gmd-6-1447-2013
  19. Jakob C (2014) Going back to basis. Nat Clim Change 4:1042–1045CrossRefGoogle Scholar
  20. Kucharski F, Ikram F, Molteni F, Farneti R, Kang IS, No HH, King MP, Giuliani G, Mogensen K (2016) Atlantic forcing of Pacific decadal variability. Clim Dyn 46:2337–2351. doi: 10.1007/s00382-015-2705-z CrossRefGoogle Scholar
  21. Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the western tropical Pacific and the North Atlantic oscillation. Clim Dyn 26:79–91. doi: 10.1007/s00382-005-0085-5 CrossRefGoogle Scholar
  22. Kucharski F, Molteni F, King MP, Farneti R, Kang I-S, Feudale L (2013) On the need of intermediate complexity general circulation models: a “SPEEDY” example. Bull Am Meteor Soc 94:25–30CrossRefGoogle Scholar
  23. Landrum L, Holland MM, Schneider DP, Hunke E (2012) Antarctic sea ice climatology, variability, and late twentieth-century change in CCSM4. J Clim 25:4817–4838. doi: 10.1175/JCLI-D-11-00289.1 CrossRefGoogle Scholar
  24. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–404. doi: 10.1029/94RG01872 CrossRefGoogle Scholar
  25. Levitus S, Boyer T (1994) World ocean atlas 1994. Temperature, vol 4. U.S. Department of Commerce, Washington, DCGoogle Scholar
  26. Levitus S, Burgett R, Boyer T (1994) World ocean atlas 1994. Salinity, vol 3. U. S. Department of Commerce, Washington, DCGoogle Scholar
  27. Lucarini V, Pascale S (2014) Entropy production and coarse graining of the climate fields in a general circulation model. Clim Dyn 43:981–1000. doi: 10.1007/s00382-014-2052-5,1304.3945 CrossRefGoogle Scholar
  28. Lucarini V, Ragone F (2011) Energetics of climate models: net energy balance and meridional enthalpy transport. Rev Geophys 49:RG1001. doi: 10.1029/2009RG000323 CrossRefGoogle Scholar
  29. Lunt DJ, Huber M, Anagnostou E, Baatsen MLJ, Caballero R, DeConto R, Dijkstra HA, Donnadieu Y, Evans D, Feng R, Foster GL, Gasson E, von der Heydt AS, Hollis CJ, Inglis GN, Jones SM, Kiehl J, Kirtland Turner S, Korty RL, Kozdon R, Krishnan S, Ladant JB, Langebroek P, Lear CH, LeGrande AN, Littler K, Markwick P, Otto-Bliesner B, Pearson P, Poulsen CJ, Salzmann U, Shields C, Snell K, Stärz M, Super J, Tabor C, Tierney JE, Tourte GJL, Tripati A, Upchurch GR, Wade BS, Wing SL, Winguth AME, Wright NM, Zachos JC, Zeebe RE (2017) The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geosci Model Dev 10:889–901. doi: 10.5194/gmd-10-889-2017 CrossRefGoogle Scholar
  30. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997a) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766. doi: 10.1029/96JC02775 CrossRefGoogle Scholar
  31. Marshall J, Hill C, Perelman L, Adcroft A (1997b) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102:5733–5752. doi: 10.1029/96JC02776 CrossRefGoogle Scholar
  32. Marshall J, Adcroft A, Campin JM, Hill C (2004) Atmosphere-ocean modeling exploiting fluid isomorphisms. Month Weather Rev 132:2882–2894CrossRefGoogle Scholar
  33. Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D, Mikolajewicz U, Notz D, Pincus R, Schmidt H, Tomassini L (2012) Tuning the climate of a global model. J Adv Model Earth Syst 4:M00A01. doi: 10.1029/2012MS000154 CrossRefGoogle Scholar
  34. Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multidecadal experiments. Clim Dyn 20:175–191CrossRefGoogle Scholar
  35. National Research Council (2011) Understanding earth’s deep past: lessons for our climate future. The National Academies Press, Washington, D.C. doi: 10.17226/13111
  36. Nguyen AT, Menemenlis D, Kwok R (2011) Arctic ice-ocean simulation with optimized model parameters: approach and assessment. J Geophys Res (Oceans) 116:C04025. doi: 10.1029/2010JC006573 CrossRefGoogle Scholar
  37. Palmer MD, McNeall DJ (2014) Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ Res Lett 9(034):016. doi: 10.1088/1748-9326/9/034016 Google Scholar
  38. Pascale S, Gregory JM, Ambaum M, Tailleux R (2011) Climate entropy budget of the HadCM3 atmosphere-ocean general circulation model and of FAMOUS, its low-resolution version. Clim Dyn 36:1189–1206. doi: 10.1007/s00382-009-0718-1 CrossRefGoogle Scholar
  39. Sanchez-Gomez E, Cassou C, Ruprich-Robert Y (2016) Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn 46:1819–1840CrossRefGoogle Scholar
  40. Sellwood BW, Valdes PJ (2008) Jurassic climates. Proc Geol Assoc 119:5–17CrossRefGoogle Scholar
  41. Sen Gupta A, Muir LC, Brown JN, Phipps SJ, Durack PJ, Monselesan D, Wijffels SE (2012) Climate drift in the CMIP3 models. J Clim 25:4621–4640CrossRefGoogle Scholar
  42. Sen Gupta A, Jourdain NC, Brown JN, Monselesan D (2013) Climate drift in the CMIP5 models. J Clim 26:8597–8615CrossRefGoogle Scholar
  43. Tang Y, Li L, Dong W, Wang B (2016) Reducing the climate shift in a new coupled model. Sci Bull 61:488–494. doi: 10.1007/s11434-016-1033-y CrossRefGoogle Scholar
  44. Trenberth KE, Fasullo JT, Balmaseda MA (2014) Earth’s energy imbalance. J Clim 27:3129–3144. doi: 10.1175/JCLI-D-13-00294.1 CrossRefGoogle Scholar
  45. Wielicki BA, Barkstrom BR, Harrison EF, Lee RB III, Smith GL, Cooper JE (1996) Clouds and the earth’s radiant energy system (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77:853–868CrossRefGoogle Scholar
  46. Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134. doi: 10.1007/s00382-012-1569-8 CrossRefGoogle Scholar
  47. Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Technol 17:525–531CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.GAP-Climate, Institute for Environmental SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Climatic Change and Climate Impacts Group, Institute for Environmental SciencesUniversity of GenevaGenevaSwitzerland

Personalised recommendations