Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe

Article

Abstract

The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970–2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land–atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves’ magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.

Keywords

Heat waves Regional climate models CORDEX Atmospheric circulation Land–atmosphere interactions Central Europe 

Notes

Acknowledgements

The study was supported by the Czech Science Foundation, project 16-22000S. O. Lhotka was supported also by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program I (NPU I), Grant number LO1415. We acknowledge the WCRP WG on Regional Climate, and the WG on Coupled Modelling, former coordinating body of CORDEX and responsible panel for CMIP5. We also thank the climate modelling groups (listed in Table 1) for producing and making available their model output, and acknowledge the Earth System Grid Federation infrastructure led by the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison, the European Network for Earth System Modelling and other partners in the Global Organisation for Earth System Science Portals (GO-ESSP). The E-OBS data set was developed within the EU-FP6 ENSEMBLES project and is provided by the ECA&D project.

Supplementary material

382_2017_3873_MOESM1_ESM.pdf (14 kb)
Supplementary material 1 (PDF 14 KB)
382_2017_3873_MOESM2_ESM.pdf (24 kb)
Supplementary material 2 (PDF 24 KB)

References

  1. Baldocchi D, Falge E, Gu L et al (2001) FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull Am Meteorol Soc 82:2415–2434. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
  2. Ballester J, Rodó X, Giorgi F (2010) Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35:1191–1205. doi: 10.1007/s00382-009-0641-5 CrossRefGoogle Scholar
  3. Barriopedro D, Fischer EM, Luterbacher J et al (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224. doi: 10.1126/science.1201224 CrossRefGoogle Scholar
  4. Bastos A, Gouveia CM, Trigo RM, Running SW (2014) Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11:3421–3435. doi: 10.5194/bg-11-3421-2014 CrossRefGoogle Scholar
  5. Beniston M (2004) The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31:4. doi: 10.1029/2003GL018857 CrossRefGoogle Scholar
  6. Berg A, Lintner B, Findell K et al (2014) Impact of soil moisture–atmosphere interactions on surface temperature distribution. J Clim 27:7976–7993. doi: 10.1175/JCLI-D-13-00591.1 CrossRefGoogle Scholar
  7. Blenkinsop S, Jones PD, Dorling SR, Osborn TJ (2009) Observed and modelled influence of atmospheric circulation on central England temperature extremes. Int J Climatol 29:1642–1660. doi: 10.1002/joc.1807 CrossRefGoogle Scholar
  8. Davin EL, Maisonnave E, Seneviratne SI (2016) Is land surface processes representation a possible weak link in current Regional Climate Models? Environ Res Lett 11:74027. doi: 10.1088/1748-9326/11/7/074027 CrossRefGoogle Scholar
  9. De Bono A, Giuliani G, Kluser S, Peduzzi P (2004) Impacts of summer 2003 heat wave in Europe. UNEP/DEWA/GRID-Europe Environ Alert Bull 2:1–4Google Scholar
  10. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  11. Della-Marta PM, Luterbacher J, Weissenfluh H et al (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29:251–275. doi: 10.1007/s00382-007-0233-1 CrossRefGoogle Scholar
  12. Duchez A, Frajka-Williams E, Josey SA et al (2016) Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ Res Lett 11:74004. doi: 10.1088/1748-9326/11/7/074004 CrossRefGoogle Scholar
  13. Fischer EM (2014) Climate science: Autopsy of two mega-heatwaves. Nat Geosci 7:332–333. doi: 10.1038/ngeo2148 CrossRefGoogle Scholar
  14. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. doi: 10.1038/ngeo866 CrossRefGoogle Scholar
  15. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi: 10.1029/2006GL029068 CrossRefGoogle Scholar
  16. Haarsma RJ, Selten F, van den Hurk B et al (2009) Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe. Geophys Res Lett 36:L04705. doi: 10.1029/2008GL036617 CrossRefGoogle Scholar
  17. Haylock MR, Hofstra N, Klein Tank AMG et al (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  18. Hoy A, Hänsel S, Skalak P et al (2016) The extreme European summer of 2015 in a long-term perspective. Int J Climatol. doi: 10.1002/joc.4751 Google Scholar
  19. Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578. doi: 10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  20. Jaeger EB, Seneviratne SI (2011) Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36:1919–1939. doi: 10.1007/s00382-010-0780-8 CrossRefGoogle Scholar
  21. Jenkinson AF, Collison FP (1977) An initial climatology of gales over the North Sea. Meteorological Office, Bracknell, Synoptic Climatology Branch Memorandum No. 62Google Scholar
  22. Jin J, Miller NL, Schlegel N (2010) Sensitivity Study of Four Land Surface Schemes in the WRF Model. Adv Meteorol 2010:1–11. doi: 10.1155/2010/167436 Google Scholar
  23. Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444. doi: 10.1175/JCLI4066.1 CrossRefGoogle Scholar
  24. Kirtman B, Power SB, Adedoyin JA et al (2013) Near-term Climate Change: Projections and Predictability. In: Climate Change 2013: The Physical Science Basis. Cambridge University Press, CambridgeGoogle Scholar
  25. Konovalov IB, Beekmann M, Kuznetsova IN et al (2011) Atmospheric impacts of the 2010 Russian wildfires: Integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmos Chem Phys 11:10031–10056. doi: 10.5194/acp-11-10031-2011 CrossRefGoogle Scholar
  26. Kotlarski S, Keuler K, Christensen OB et al (2014) Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. doi: 10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  27. Kyselý J (2008) Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: Analysis over the 20th century. Glob Planet Change 62:147–163. doi: 10.1016/j.gloplacha.2008.01.003 CrossRefGoogle Scholar
  28. Kyselý J (2010) Recent severe heat waves in central Europe: how to view them in a long-term prospect? Int J Climatol 109:89–109. doi: 10.1002/joc1874 Google Scholar
  29. Lau NC, Nath MJ (2014) Model simulation and projection of European heat waves in present-day and future climates. J Clim 27:3713–3730. doi: 10.1175/JCLI-D-13-00284.1 CrossRefGoogle Scholar
  30. Lhotka O, Kyselý J (2015a) Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. Int J Climatol 35:1232–1244. doi: 10.1002/joc.4050 CrossRefGoogle Scholar
  31. Lhotka O, Kyselý J (2015b) Spatial and temporal characteristics of heat waves over Central Europe in an ensemble of regional climate model simulations. Clim Dyn 45:2351–2366. doi: 10.1007/s00382-015-2475-7 CrossRefGoogle Scholar
  32. Lhotka O, Kyselý J, Farda A (2017) Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor Appl Climatol. doi: 10.1007/s00704-016-2031-3 Google Scholar
  33. Michel C, Rivière G, Terray L, Joly B (2012) The dynamical link between surface cyclones, upper-tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking. Geophys Res Lett 39:6. doi: 10.1029/2012GL051682 CrossRefGoogle Scholar
  34. Orth R, Zscheischler J, Seneviratne SI (2016) Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci Rep 6:28334. doi: 10.1038/srep28334 CrossRefGoogle Scholar
  35. Plavcová E, Kyselý J (2012) Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data. Clim Dyn 39:1681–1695. doi: 10.1007/s00382-011-1278-8 CrossRefGoogle Scholar
  36. Plavcová E, Kyselý J (2016) Overly persistent circulation in climate models contributes to overestimated frequency and duration of heat waves and cold spells. Clim Dyn 46:2805–2820. doi: 10.1007/s00382-015-2733-8 CrossRefGoogle Scholar
  37. Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711. doi: 10.1007/s00382-009-0607-7 CrossRefGoogle Scholar
  38. Robine J-M, Cheung SLK, Le Roy S et al (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol 331:171–178. doi: 10.1016/j.crvi.2007.12.001 CrossRefGoogle Scholar
  39. Russo S, Sillmann J, Fischer EM (2015) Top ten European heatwaves since 1950 and their occurrence in the future. Environ Res Lett 10:124003. doi: 10.1088/1748-9326/10/12/124003 CrossRefGoogle Scholar
  40. Scaife AA, Woollings T, Knight J et al (2010) Atmospheric Blocking and Mean Biases in Climate Models. J Clim 23:6143–6152. doi: 10.1175/2010JCLI3728.1 CrossRefGoogle Scholar
  41. Schubert SD, Wang H, Koster R et al (2014) Northern Eurasian heat waves and droughts. J Clim 27:3169–3207. doi: 10.1175/JCLI-D-13-00360.1 CrossRefGoogle Scholar
  42. Shaposhnikov D, Revich B, Bellander T et al (2014) Mortality related to air pollution with the moscow heat wave and wildfire of 2010. Epidemiology 25:359–364. doi: 10.1097/EDE.0000000000000090 CrossRefGoogle Scholar
  43. Stéfanon M, Drobinski P, D’Andrea F et al (2014) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim Dyn 42:1309–1324. doi: 10.1007/s00382-013-1794-9 CrossRefGoogle Scholar
  44. Stegehuis AI, Vautard R, Ciais P et al (2013) Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations. Clim Dyn 41:455–477. doi: 10.1007/s00382-012-1559-x CrossRefGoogle Scholar
  45. Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. doi: 10.1007/s10584-011-0151-4 CrossRefGoogle Scholar
  46. Tomczyk AM, Bednorz E (2016) Heat waves in Central Europe and their circulation conditions. Int J Climatol 36:770–782. doi: 10.1002/joc.4381 CrossRefGoogle Scholar
  47. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, ExeterGoogle Scholar
  48. Vautard R, Gobiet A, Jacob D et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575. doi: 10.1007/s00382-013-1714-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Atmospheric PhysicsCzech Academy of SciencesPragueCzech Republic
  2. 2.Global Change Research InstituteCzech Academy of SciencesBrnoCzech Republic
  3. 3.Faculty of Environmental SciencesCzech University of Life SciencesPragueCzech Republic

Personalised recommendations