Climate Dynamics

, Volume 51, Issue 11–12, pp 4371–4383 | Cite as

A process-based decomposition of decadal-scale surface temperature evolutions over East Asia

  • Junwen ChenEmail author
  • Yi Deng
  • Wenshi LinEmail author
  • Song Yang


This study partitions the observed decadal evolution of surface temperature and surface temperature differences between two decades (early 2000s and early 1980s) over the East Asian continent into components associated with individual radiative and non-radiative (dynamical) processes in the context of the coupled atmosphere-surface climate feedback-response analysis method (CFRAM). Rapid warming in this region occurred in late 1980s and early 2000s with a transient pause of warming between the two periods. The rising CO2 concentration provides a sustained, region-wide warming contribution and surface albedo effect, largely related to snow cover change, is important for warming/cooling over high-latitude and high-elevation regions. Sensible hear flux and surface dynamics dominates the evolution of surface temperature, with latent heat flux and atmospheric dynamics working against them mostly through large-scale and convective/turbulent heat transport. Cloud via its shortwave effect provides positive contributions to warming over southern Siberia and South China. The longwave effect associated with water vapor change contributes significant warming over northern India, Tibetan Plateau, and central Siberia. Impacts of solar irradiance and ozone changes are relatively small. The strongest year-to-year temperature fluctuation occurred at a rapid warming (1987–1988) and a rapid cooling (1995–1996) period. The pattern of the rapid warming receives major positive contributions from sensible heat flux with changes in atmospheric dynamics, water vapor, clouds, and albedo providing secondary positive contributions, while surface dynamics and latent heat flux providing negative contributions. The signs of the contributions from individual processes to the rapid cooling are almost opposite to those to the rapid warming.


Decadal variation CFRAM Surface temperature Radiative process Dynamical process East Asia 



The ERA-Interim dataset was provided by the European Centre for Medium-range Weather Forecasts. The Global Precipitation Climatology Project combined precipitation dataset was provided by the US National Oceanic and Atmospheric Administration. Lin and Yang are supported by the National Key Scientific Research Plan of China (Grant 2014CB953904), the National Natural Science Foundation of China (Grants 91637208, 41690123, and 41690120), and the “111-Plan” Project of China (Grant B17049). Chen and Deng are supported by the National Science Foundation (Grants AGS-1147601, AGS-1354402, and AGS-1445956).


  1. Bao X, Zhang F (2013) Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J Clim 26:206–214CrossRefGoogle Scholar
  2. Cai M, Lu J (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: method demonstrations and comparisons. Clim Dyn 32:887–900CrossRefGoogle Scholar
  3. Chen J-P, Chen I-J, Tsai I-C (2016) Dynamic feedback of aerosol effects on the East Asian summer monsoon. J Clim 29:6137–6149CrossRefGoogle Scholar
  4. Chen J, Deng Y, Lin W, Yang S (2017) A process-based assessment of decadal-scale surface temperature evolutions in the NCAR CCSM4’s 25-year hindcast experiments. J Clim. doi: 10.1175/JCLI-D-16-0869.1 CrossRefGoogle Scholar
  5. Chung CE, Ramanathan V, Carmichael G, Kulkarni S, Tang Y, Adhikary B, Leung LR, Qian Y (2010) Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation. Atmos Chem Phys 10:6007–6024Google Scholar
  6. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteor Soc 137:553–597CrossRefGoogle Scholar
  7. Deng Y, Park T-W, Cai M (2012) Process-based decomposition of the global surface temperature response to El Niño in boreal winter. J Atmos Sci 69:1706–1712CrossRefGoogle Scholar
  8. Deng Y, Park T-W, Cai M (2013) Radiative and dynamical forcing of the surface and atmospheric temperature anomalies associated with the northern annular mode. J Clim 26:5124–5138CrossRefGoogle Scholar
  9. Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the Tibetan. Plateau? Sci Rep 5:13711CrossRefGoogle Scholar
  10. Feng J-M, Wang Y-L, Ma Z-G, Liu Y-H (2012) Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China. J Clim 25:7187–7203CrossRefGoogle Scholar
  11. Fu Q, Liou KN (1992) On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J Atmos Sci 49:2139–2156CrossRefGoogle Scholar
  12. Fu Q, Liou KN (1993) Parameterization of the radiative properties of cirrus clouds. J Atmos Sci 50:2008–2025CrossRefGoogle Scholar
  13. Hu ZZ, Yang S, Wu R (2003) Long-term climate variations in China and global warming signals. J Geophys Res. doi: 10.1029/2003JD003651 CrossRefGoogle Scholar
  14. Hu Z, Zhang C, Hu Q, Tian H (2014) Temperature changes in central Asia from 1979 to 2011 based on multiple datasets. J Clim 27:1143–1167CrossRefGoogle Scholar
  15. Hu X, Yang S, Cai M (2016) Contrasting the eastern Pacific El Niño and the central Pacific El Niño: process-based feedback attribution. Clim Dyn 47:2413–2424CrossRefGoogle Scholar
  16. Hu X, Li Y, Yang S, Deng Y, Cai M (2017) Process-based decomposition of the decadal climate difference between 2002–13 and 1984–95. J Clim 30:4373–4393CrossRefGoogle Scholar
  17. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  18. Jeong J-H, Ou T, Linderholm HW, Kim B-M, Kim S-J, Kug J-S, Chen D (2011) Recent recovery of the Siberian high intensity. J Geophys Res Atmos 116:D23102. doi: 10.1029/2011JD015904 CrossRefGoogle Scholar
  19. Kaufman YJ, Tanre D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223CrossRefGoogle Scholar
  20. Li Z, Li C, Chen H, Tsay SC, Holben B, Huang J, Li B, Maring H, Qian Y, Shi G, Xia X, Yin Y, Zheng Y, Zhuang G (2011) East Asian studies of tropospheric aerosols and their impact on regional climate (EAST-AIRC): an overview. J Geophys Res Atmos 116:D00K34. doi: 10.1029/2010JD015257 CrossRefGoogle Scholar
  21. Li Z, Lau WKM, Ramanathan V, Wu G, Ding Y, Manoj MG, Liu J, Qian Y, Li J, Zhou T, Fan J, Rosenfeld D, Ming Y, Wang Y, Huang J, Wang B, Xu X, Lee SS, Cribb M, Zhang F, Yang X, Takemura T, Wang K, Xia X, Yin Y, Zhang H, Guo J, Zhai PM, Sugimoto N, Babu SS, Brasseur GP (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54. doi: 10.1002/2015RG000500
  22. Liu B, Zhou T (2017) Atmospheric footprint of the recent warming slowdown. Sci Rep 7:40947CrossRefGoogle Scholar
  23. Liu B, Xu M, Henderson M, Qi Y, Li Y (2004) Taking China’s temperature: daily range, warming trends, and regional variations, 1955–2000. J Clim 17:4453–4462CrossRefGoogle Scholar
  24. Liu B, Zhou T, Lu J (2015) Quantifying contributions of model processes to the surface temperature bias in FGOALS-g2. J Adv Model Earth Syst 7:1519–1533CrossRefGoogle Scholar
  25. Lu J, Cai M (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: formulation. Clim Dyn 32:873–885CrossRefGoogle Scholar
  26. Meehl GA, Teng H (2012) Case studies for initialized decadal hindcasts and predictions for the Pacific region. Geophys Res Lett 39:L22705. doi: 10.1029/2012GL053423 CrossRefGoogle Scholar
  27. Park H-S, Sohn BJ (2010) Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. J Geophys Res Atmos 115:D14101. doi: 10.1029/2009JD012752 CrossRefGoogle Scholar
  28. Park T-W, Deng Y, Cai M (2012) Feedback attribution of the El Niño–southern oscillation–related atmospheric and surface temperature anomalies. J Geophys Res Atmos 117:D23101. doi: 10.1029/2012JD018468 CrossRefGoogle Scholar
  29. Park T-W, Deng Y, Cai M, Jeong J-H, Zhou R (2013) A dissection of the surface temperature biases in the community earth system model. Clim Dyn 43:2043–2059CrossRefGoogle Scholar
  30. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227Google Scholar
  31. Ren G, Zhou Y, Chu Z, Zhou J, Zhang A, Guo J, Liu X (2008) Urbanization effects on observed surface air temperature trends in North China. J Clim 21:1333–1348CrossRefGoogle Scholar
  32. Ren R, Sun S, Yang Y, Li Q (2016) Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase. Clim Dyn 47:1827–1844CrossRefGoogle Scholar
  33. Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafr Periglac Process 21:136–155CrossRefGoogle Scholar
  34. Rosenfeld D, Andreae MO, Asmi A, Chin M, de Leeuw G, Donovan DP, Kahn R, Kinne S, Kivekäs N, Kulmala M, Lau W, Schmidt KS, Suni T, Wagner T, Wild M, Quaas J (2014) Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophys 52:750–808Google Scholar
  35. Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-y, Iredell M, Ek M, Meng J, Yang R, Mendez MP, Dool Hvd, Zhang Q, Wang W, Chen M, Becker E (2014) The NCEP Climate Forecast System version 2. J Clim 27:2185–2208CrossRefGoogle Scholar
  36. Seinfeld JH, Carmichael GR, Arimoto R, Conant WC, Brechtel FJ, Bates TS, Cahill TA, Clarke AD, Doherty SJ, Flatau PJ, Huebert BJ, Kim J, Markowicz KM, Quinn PK, Russell LM, Russell PB, Shimizu A, Shinozuka Y, Song CH, Tang Y, Uno I, Vogelmann AM, Weber RJ, Woo J-H, Zhang XY (2004) ACE-ASIA: regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull Am Meteorol Soc 85:367–380Google Scholar
  37. Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46:159–207CrossRefGoogle Scholar
  38. Sun Y, Zhang X, Ren G, Zwiers FW, Hu T (2016) Contribution of urbanization to warming in China. Nat Clim Chang 6:706–709CrossRefGoogle Scholar
  39. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  40. Wang JXL, Gaffen DJ (2001) Late-twentieth-century climatology and trends of surface humidity and temperature in China. J Clim 14:2833–2845CrossRefGoogle Scholar
  41. Wang A, Zeng X (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res Atmos 117:D05102. doi: 10.1029/2011JD016553 CrossRefGoogle Scholar
  42. Wang J, Yan Z, Jones PD, Xia J (2013) On “observation minus reanalysis” method: a view from multidecadal variability. J Geophys Res Atmos 118:7450–7458CrossRefGoogle Scholar
  43. Xia X (2010a) A closer looking at dimming and brightening in China during 1961–2005. Ann Geophys 28:1121–1132CrossRefGoogle Scholar
  44. Xia X (2010b) Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J Geophys Res Atmos 115:D00K06. doi: 10.1029/2009JD012879 CrossRefGoogle Scholar
  45. Yang Y, Ren R (2017) On the contrasting decadal changes of diurnal surface temperature range between the Tibetan Plateau and southeastern China during the 1980s–2000s. Adv Atmos Sci 34:181–198CrossRefGoogle Scholar
  46. Yang D, Kane DL, Hinzman LD, Zhang X, Zhang T, Ye H (2002) Siberian Lena River hydrologic regime and recent change. J Geophys Res Atmos 107(D23):4694. doi: 10.1029/2002JD002542 CrossRefGoogle Scholar
  47. Yang X, Hou Y, Chen B (2011) Observed surface warming induced by urbanization in east China. J Geophys Res Atmos 116:D14113. doi: 10.1029/2010JD015452 CrossRefGoogle Scholar
  48. Yang Y, Ren R, Cai M, Rao J (2015) Attributing analysis on the model bias in surface temperature in the climate system model FGOALS-s2 through a process-based decomposition method. Adv Atmos Sci 32:457–469CrossRefGoogle Scholar
  49. Ye K, Wu R, Liu Y (2015) Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s. J Geophys Res Atmos 120:2738–2753CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Atmospheric SciencesSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations