Climate Dynamics

, Volume 50, Issue 9–10, pp 3687–3698 | Cite as

Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble

  • Katinka Bellomo
  • Lisa N. Murphy
  • Mark A. Cane
  • Amy C. Clement
  • Lorenzo M. Polvani
Article

Abstract

Previous studies suggest that internal variability, in particular the Atlantic Meridional Overturning Circulation (AMOC), drives the Atlantic Multidecadal Oscillation (AMV), while external radiative forcing only creates a steady increase in sea surface temperature (SST). This view has been recently challenged and new evidence has emerged that aerosols and greenhouse gases could play a role in driving the AMV. Here we examine the drivers of the AMV using the Community Earth System Model (CESM) Large Ensemble and Last Millennium Ensemble. By computing the ensemble mean we isolate the radiatively forced component of the AMV, while we estimate the role of internal variability using the ensemble spread. We find that phase changes of the AMV over the years 1854–2005 can be explained only in the presence of varying historical forcing. Further, we find that internal variability is large in North Atlantic SST at timescales shorter than 10–25 years, but at longer timescales the forced response dominates. Single forcing experiments show that greenhouse gases and tropospheric aerosols are the main drivers of the AMV in the latter part of the twentieth century. Finally, we show that the forced spatial pattern of SST is not distinct from the internal variability pattern, which has implications for detection and attribution.

Notes

Acknowledgements

KB was funded by a cooperative agreement between NASA and Columbia University (NNX15AJ05A). AC and LM were funded by NSF P2C2 program. Large ensemble data are made available by the CESM Large Ensemble Community Project and supercomputing resources provided by NSF/CISL/Yellowstone. NOAA ERSSTv4 data is provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/psd/. We thank two anonymous reviewers for helping improving the analysis presented here.

References

  1. Ba J et al (2014) A multi-model comparison of Atlantic multidecadal variability. Clim Dyn 43(9–10):2333–2348CrossRefGoogle Scholar
  2. Baringer MO, McCarthy GD, Willis J, Lankhorst M, Smeed DA, Send U, Rayner D, Johns WE, Meinen CS, Cunningham SA, Kanzow TO, Frajka-Williams E, Marotzke J (2013) Meridional overturning circulation observations in the North Atlantic Ocean. Bull Am Meteor Soc 95(7):S67–S69. doi: 10.1175/2014BAMSStateoftheClimate.1 Google Scholar
  3. Bellomo K, Clement AC, Murphy LN, Polvani L, Cane MA (2016) New observational evidence for a positive cloud feedback that amplifies the Atlantic multidecadal oscillation. Geophys Res Lett. doi: 10.1002/2016GL069961 Google Scholar
  4. Bjerknes J (1964) Atlantic air sea interaction. Adv Geophys 10:1–82CrossRefGoogle Scholar
  5. Booth BB (2015) Why the Pacific is cool. Science 347(6225):952. doi: 10.1126/science.aaa4840 CrossRefGoogle Scholar
  6. Booth BB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484(7393):228–232. doi: 10.1038/nature10946 CrossRefGoogle Scholar
  7. Buckley MW, Marshall J (2016) Observations, inferences, and mechanisms of Atlantic meridional overturning circulation variability: a review. Rev Geophys 54:5–63. doi: 10.1002/2015RG000493 CrossRefGoogle Scholar
  8. Cane M, Clement A, Murphy L, Bellomo K (2017) Low pass filtering, heat flux and Atlantic multidecadal variability. J Clim. doi: 10.1175/JCLI-D-16-0810.1
  9. Cheng W, Chiang JCH, Zhang D (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J Clim 26:7187–7197. doi: 10.1175/JCLI-D-12-00496.1 CrossRefGoogle Scholar
  10. Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Rädel G, Stevens B (2015) The Atlantic multidecadal oscillation without a role for ocean circulation. Science 350:320–324CrossRefGoogle Scholar
  11. Cunningham SA, Roberts CD, Frajka-Williams E, Johns WE, Hobbs W, Palmer MD, Rayner D, Smeed DA, McCarthy G (2013) Atlantic meridional overturning circulation slowdown cooled the subtropical ocean. Geophys Res Lett 40:6202–6207. doi: 10.1002/2013GL058464 CrossRefGoogle Scholar
  12. Danabasoglu G, Yeager SG, Kwon Y-O, Tribbia JJ, Phillips AS, Hurrell JW (2012) Variability of the Atlantic meridional overturning circulation in CCSM4. J Clim 25:5153–5172. doi: 10.1175/JCLI-D-11-00463.1 CrossRefGoogle Scholar
  13. DelSole T, Tippett MK, Shukla J (2010) A significant component of unforced multidecadal variability in the recent acceleration of global warming. J Clim. doi: 10.1175/2010JCLI3659.1 Google Scholar
  14. Delworth TL, Zeng F (2016) The impact of the North Atlantic oscillation on climate through its impact on the Atlantic meridional overturning circulation. J Clim. doi: 10.1175/JCLI-D-15-0396.1 Google Scholar
  15. Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  16. Delworth TL, Zeng F, Zhang L, Zhang R, Vecchi G, Yang X (2017) The central role of ocean dynamics in connecting the North Atlantic oscillation to the Atlantic multidecadal oscillation. J Clim. doi: 10.1175/JCLI-D-16-0358.1 Google Scholar
  17. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080. doi: 10.1029/2000GL012745 CrossRefGoogle Scholar
  18. Evan AT, Allen RJ, Vimont DJ, Bennartz R (2013) The modification of sea surface temperature anomaly linear damping time scales by stratocumulus clouds. J Clim 26:3619–3630CrossRefGoogle Scholar
  19. Foukal NP, Lozier MS (2016) No inter-gyre pathway for seasurface temperature anomalies in the North Atlantic. Nat Commun doi: 10.1038/ncomms11333 Google Scholar
  20. Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP (2013) North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 499(7459):464–467. doi: 10.1038/nature12268 CrossRefGoogle Scholar
  21. Hu Q, Veres MC (2016) Atmospheric responses to North Atlantic SST anomalies in idealized experiments. Part II: North American precipitation. J Clim 29:659–671. doi: 10.1175/JCLI-D-14-00751.1 CrossRefGoogle Scholar
  22. Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W et al (2014) Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons. J Clim. doi: 10.1175/JCLI-D-14-00006.1 Google Scholar
  23. Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn 41(5–6):1345–1364CrossRefGoogle Scholar
  24. Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G et al (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349. doi: 10.1175/BAMS-D-13-00255.1 CrossRefGoogle Scholar
  25. Knight JR (2009) The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J Clim 22:1610–1625. doi: 10.1175/2008JCLI2628.1 CrossRefGoogle Scholar
  26. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708CrossRefGoogle Scholar
  27. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706. doi: 10.1029/2006GL026242 CrossRefGoogle Scholar
  28. Kushnir Y (1994) Interdecadal variations in North Atlantic surface temperature and associated atmospheric conditions. J Clim 7:141–157CrossRefGoogle Scholar
  29. Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos 87:233–244CrossRefGoogle Scholar
  30. Martin ER, Thorncroft C, Booth BBB (2014) The multidecadal Atlantic SST—Sahel rainfall teleconnection in CMIP5 simulations. J Clim 27:784–806CrossRefGoogle Scholar
  31. McCarthy GD, Haigh ID, Hirschi JJM, Grist JP, Smeed DA (2015) Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521:508–510. doi: 10.1038/nature14491 CrossRefGoogle Scholar
  32. Murphy LN, Bellomo K, Cane M, Clement A (2017) The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys Res Lett 44:2472–2480. doi: 10.1002/2016GL071337 Google Scholar
  33. Nigam S, Guan B, Ruiz-Barradas A (2011) Key role of the Atlantic multidecadal oscillation in 20th century drought and wet periods over the Great Plains. Geophys Res Lett 38:L16713. doi: 10.1029/2011GL048650 CrossRefGoogle Scholar
  34. O’Reilly CH, Huber M, Woollings T, Zanna L (2016) The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation. Geophys Res Lett. doi: 10.1002/2016GL067925.Google Scholar
  35. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694CrossRefGoogle Scholar
  36. Otto-Bliesner BL et al (2016) Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model. Bull Am Meteor Soc 97:735–754. doi: 10.1175/BAMS-D-14-00233.1 CrossRefGoogle Scholar
  37. Peings Y, Simpkins G, Magnusdottir G (2016) Multidecadal fluctuations of the North Atlantic Ocean and feedback on the winter climate in CMIP5 control simulations. J Geophys Res Atmos 121:2571–2592. doi: 10.1002/2015JD024107 CrossRefGoogle Scholar
  38. Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792. doi: 10.1038/ngeo1595.CrossRefGoogle Scholar
  39. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118. doi: 10.1126/science.1109496 CrossRefGoogle Scholar
  40. Tandon NF, Kushner PJ (2015) Does external forcing interfere with the AMOC’s influence on North Atlantic sea surface temperature? J Clim 28:6309–6323. doi: 10.1175/JCLI-D-14-00664.1 CrossRefGoogle Scholar
  41. Terray L (2012) Evidence for multiple drivers of North Atlantic multi- decadal climate variability. Geophys Res Lett 39:L19712. doi: 10.1029/2012GL053046 CrossRefGoogle Scholar
  42. Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST in the North Atlantic. J Clim 22:1469–1481CrossRefGoogle Scholar
  43. Ting M, Kushnir Y, Li C (2014) North Atlantic multidecadal SST oscillation: external forcing versus internal variability. J Mar Syst 133:27–38CrossRefGoogle Scholar
  44. Trenary L, DelSole T (2016) Does the Atlantic multidecadal oscillation get its predictability from the Atlantic meridional overturning circulation? J Clim 29:5267–5280CrossRefGoogle Scholar
  45. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi: 10.1029/2006GL026894 CrossRefGoogle Scholar
  46. Wang, X., J. Li, C. Sun, and T. Liu, 2017: NAO and its relationship with the Northern Hemisphere mean surface temperature in CMIP5 simulations, J Geophys Res Atmos. doi: 10.1002/2016JD025979 Google Scholar
  47. Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull Am Meteor Soc 80:245–255CrossRefGoogle Scholar
  48. Yuan T, Oreopoulos L, Zelinka M, Yu H, Norris JR, Chin M, Platnick S, Meyer K (2016) Positive low cloud and dust feedbacks amplify tropical North Atlantic multidecadal oscillation. Geophys Res Lett 43:1349–1356. doi: 10.1002/2016GL067679 CrossRefGoogle Scholar
  49. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi: 10.1029/2006GL026267 CrossRefGoogle Scholar
  50. Zhang R, Delworth TL, Sutton R, Hodson D, Dixon KW, Held IM, Kushnir Y, Marshall D, Ming Y, Msadek R, Robson J, Rosati A, Ting M, Vecchi GA, 2013: Have aerosols caused the observed Atlantic multidecadal variability?. J Atmos Sci. doi: 10.1175/JAS-D-12-0331.1 Google Scholar
  51. Zhang R, Sutton R, Danabasoglu G, Delworth TL, Kim WM, Robson J, Yeager SG (2016) Comment on “The Atlantic multidecadal oscillation without a role for ocean circulation”. Science. doi: 10.1126/science.aaf1660 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA
  2. 2.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  3. 3.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations