Climate Dynamics

, Volume 51, Issue 11–12, pp 3999–4013 | Cite as

Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes

  • Byeong-Hee Kim
  • Kyung-Ja HaEmail author


The strengthening and westward shift of Pacific Walker Circulation (PWC) is observed during the recent decades. However, the relative roles of global warming and natural variability on the change in PWC unclearly remain. By conducting numerical atmospheric general circulation model (AGCM) experiments using the spatial SST patterns in the global warming and natural modes which are obtained by the multi-variate EOF analysis from three variables including precipitation, sea surface temperature (SST), and divergent zonal wind, we indicated that the westward shift and strengthening of PWC are caused by the global warming SST pattern in the global warming mode and the negative Interdecadal Pacific Oscillation-like SST pattern in the natural mode. The SST distribution of the Pacific Ocean (PO) has more influence on the changes in equatorial zonal circulations and tropical precipitation than that of the Indian Ocean (IO) and Atlantic Ocean (AO). The change in precipitation is also related to the equatorial zonal circulations variation through the upward and downward motions of the circulations. The IO and AO SST anomalies in the global warming mode can affect on the changes in equatorial zonal circulations, but the influence of PO SST disturbs the changes in Indian Walker Circulation and Atlantic Walker Circulation which are affected by the anomalous SST over the IO and AO. The zonal shift of PWC is found to be highly associated with a zonal gradient of SST over the PO through the idealized numerical AGCM experiments and predictions of CMIP5 models.


Equatorial zonal circulations Global warming Interdecadal Pacific Oscillation Pacific Walker Circulation 



This work was supported by the National Research Foundation of Korea (NRF) through a Global Research Laboratory (GRL) grant (MEST 2011-0021927).


  1. Bayr T, Dommengt D, Martin T, Power SB (2014) The eastward shift of the Walker circulation in response to global warming and its relationship to ENSO variability. Clim Dyn 43:2747–2763. doi: 10.1007/s00382-014-2091-y CrossRefGoogle Scholar
  2. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 CrossRefGoogle Scholar
  3. Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observation. J Hydrometeorol 3:249–266CrossRefGoogle Scholar
  4. Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  5. DiNezio Pn, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee S-K (2009) Climate response of the equatorial pacific to global warming. J Clim 22:4873–4892. doi: 10.1175/2009JCLI2982.1 CrossRefGoogle Scholar
  6. England MH, McGregor S, Spence P et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227CrossRefGoogle Scholar
  7. Hastenrath S (1985) Climate and circulation of the tropics. D. Reisel Publishing Company, DordrechtCrossRefGoogle Scholar
  8. Horel JD, Wallace JM (1981) Panetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109:813–829CrossRefGoogle Scholar
  9. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  10. Kim BH, Ha KJ (2015) Observed changes of global and western Pacific precipitation associated with global warming SST mode and mega-ENSO SST mode. Clim Dyn 45:3067–3075. doi: 10.1007/s00382-015-2524-2 CrossRefGoogle Scholar
  11. Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupling ocean-atmosphere model. J Clim 8:2181–2199. doi: 10.1175/1520-0442(1995)008\2181>2.0.CO;2 CrossRefGoogle Scholar
  12. Kousky VE, Kagano MT, Cavalcanti IF (1984) A review of the Southern Oscillation: oceanic-atmosphric circulation changes and related rainfall anomalies. Tellus A 36:490–504Google Scholar
  13. L’Heureux ML, Lee S, Lyon B (2013) Recent multi-decadal strengthening of the Walker circulation across the tropical pacific. Nat Clim Change. doi: 10.1038/NCLIMATE1840 CrossRefGoogle Scholar
  14. Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119. doi: 10.1007/s00382-012-1564-0 CrossRefGoogle Scholar
  15. Lindzen R, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436. doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2 CrossRefGoogle Scholar
  16. Liu J, Wang B, Cane MA, Yim SY, Lee JY (2013) Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493:656–659CrossRefGoogle Scholar
  17. Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci 109:18701–18706Google Scholar
  18. Ma S, Zhou T (2016) Robust strengthening and westward shift of the tropical pacific Walker circulation during 1979–2012: a comparison of 7 sets of reanalysis data and 26 CMIP5 models. J Clim. doi: 10.1175/JCLI-D-15-0398.1 CrossRefGoogle Scholar
  19. McGregor S, Timmermann A, Stuecker MF et al (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892Google Scholar
  20. Meng Q, Latif M, Park W, Keenlyside NS, Semenov VA, Martin T (2012) Twentieth century Walker Circulation change: data analysis and model experiments. Clim Dyn 38:1757–1773CrossRefGoogle Scholar
  21. Moon HJ, Kim BH, Oh HE, Lee JY, Ha KJ (2014) Future change using the CMIP5 MME and best models: I. near and long term future change of temperature and precipitation over East Asia. Atmos Korean Meteorol Soc 24(3):403–417 (Korean)Google Scholar
  22. Parker DE, Rayner NA, Horton EB, Folland CK (1999) Development of the Hadley Center sea ice and sea surface temperature data sets (HadISST). WMO workshop on advances in marine climatology-CLIMAR99. Environment Canada, Vancouver, BC, pp 194–203Google Scholar
  23. Philander S (1990) El Niño, La Niña, and the southern oscillation. Academic, San DiegoGoogle Scholar
  24. Power SB, Kociuba G (2011) What caused the observed twentieth-century weakening of the Walker circulation? J Clim 24:6501–6514. doi: 10.1175/2011JCLI4101.1 CrossRefGoogle Scholar
  25. Roeckner E et al (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Rep. 218, 99 pp. Max Planck Inst. For Meteorol, Hamburg, GermanyGoogle Scholar
  26. Sandeep S, Stordal F, Sardeshmukh PD, Compo GP (2014) Pacific Walker Circulation variability in coupled and uncoupled climate models. Clim Dyn 43:103–117CrossRefGoogle Scholar
  27. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  28. Tokinaga H, Xie S, Deser C, Kosaka Y, Okumura YM (2012a) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nat Res Lett 491:439–443Google Scholar
  29. Tokinaga H, Xie S, Timmermann A, McGregor S, Ogata T, Kubota H, Okumura YM (2012b) Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J Clim 25:1689–1710CrossRefGoogle Scholar
  30. Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Change. doi: 10.1038/NCLIMATE2341 CrossRefGoogle Scholar
  31. Uppala SM et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  32. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi: 10.1175/JCLI4258.1 CrossRefGoogle Scholar
  33. Wang B, Liu J, Kim HJ, Webster PJ, Yim SY, Xiang B (2013) Northern Hemisphere summer monsoon intensified by mega-El Niño southern oscillation and Atlantic multidecadal oscillation. PNAS 110:5347–5352. doi: 10.1073/pnas.1219405110 CrossRefGoogle Scholar
  34. Yu B, Boer GJ (2002) The roles of radiation and dynamical processes in the El Niño-like response to global warming. Clim Dyn 19:539–553. doi: 10.1007/s00382-002-0244-x CrossRefGoogle Scholar
  35. Yu B, Zwiers FW (2010) Changes in equatorial atmospheric zonal circulations in recent decades. Geophys Res Lett 37:L05701Google Scholar
  36. Yu B, Zwiers FW, Boer GJ, Ting MF (2012) Structure and variances of equatorial zonal circulation in a multimodel ensemble. Clim Dyn 39:2403–2419. doi: 10.1007/s00382-012-1372-6 CrossRefGoogle Scholar
  37. Zhang L (2016) The roles of external forcing and natural variability in global warming hiatuses. Clim Dyn 47:3157–3169. doi: 10.1007/s00382-016-3018-6
  38. Zhang L, Karnauskas KB (2017) The role of tropical interbasin SST gradients in forcing Walker circulation trends. J Clim 30:499–508. doi: 10.1175/JCLI-D-16-0.491 CrossRefGoogle Scholar
  39. Zhang L, Li T (2017) Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming. Clim Dyn 48:987–997. doi: 10.1007/s00382-016-3123-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Division of Earth Environmental SystemPusan National UniversityBusanRepublic of Korea

Personalised recommendations