Climate Dynamics

, Volume 50, Issue 7–8, pp 2799–2812 | Cite as

Enhanced seasonal predictability of the summer mean temperature in Central Europe favored by new dominant weather patterns

Article

Abstract

In this study two complementary approaches have been combined to estimate the reliability of the data-driven seasonal predictability of the meteorological summer mean temperature (\(T_{JJA}\)) over Europe. The developed model is based on linear regressions and uses early season predictors to estimate the target value \(T_{JJA}\). We found for the Potsdam (Germany) climate station that the monthly standard deviations (\(\sigma\)) from January to April and the temperature mean (m) in April are good predictors to describe \(T_{JJA}\) after 1990. However, before 1990 the model failed. The core region where this model works is the north-eastern part of Central Europe. We also analyzed long-term trends of monthly Hess/Brezowsky weather types as possible causes of the dynamical changes. In spring, a significant increase of the occurrences for two opposite weather patterns was found: Zonal Ridge across Central Europe (BM) and Trough over Central Europe (TRM). Both currently make up about 30% of the total alternating weather systems over Europe. Other weather types are predominantly decreasing or their trends are not significant. Thus, the predictability may be attributed to these two weather types where the difference between the two Z500 composite patterns is large. This also applies to the north-eastern part of Central Europe. Finally, the detected enhanced seasonal predictability over Europe is alarming, because severe side effects may occur. One of these are more frequent climate extremes in summer half-year.

Notes

Acknowledgements

I thank Frank Wechsung for his critical comments during time preparing the manuscript and the German Meteorological Service for maintaining such a consistent climate record.

Supplementary material

382_2017_3772_MOESM1_ESM.pdf (565 kb)
Supplementary material 1 (PDF 566 KB)

References

  1. Barnett TP, Heinz HD, Hasselmann K (1984) Statistical prediction of seasonal air temperature over eurasia. Tellus A 36A(2):132–146. doi: 10.1111/j.1600-0870.1984.tb00233.x CrossRefGoogle Scholar
  2. Barnston AG, Mason SJ (2011) Evaluation of iri’s seasonal climate forecasts for the extreme 15 % tails. Weather Forecast 26(4):545–554. doi: 10.1175/WAF-D-10-05009.1 CrossRefGoogle Scholar
  3. Bissolli P, Dittmann E (2001) The objective weather type classi cation of the german weather service and its possibilities of application to environmental and meteorological investigations. Meteorol Z 10:253–260. doi: 10.1127/0941-2948/2001/0010-0253 CrossRefGoogle Scholar
  4. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J (2014) Recent arctic amplification and extreme mid-latitude weather. Nat Geosci 7(9):627–637. doi: 10.1038/ngeo2234 CrossRefGoogle Scholar
  5. Cohen JL, Furtado JC, Barlow M, Alexeev VA, Cherry VA (2012) Asymmetric seasonal temperature trends. Geophys Res Lett 39(L04):705. doi: 10.1029/2011GL050582 Google Scholar
  6. Colman A, Davey M (1999) Prediction of summer temperature, rainfall and pressure in europe from preceding winter north atlantic ocean temperature. Int J Climatol 19(5):513–536. doi: 10.1002/(SICI)1097-0088(199904)19:5<513::AID-JOC370>3.0.CO;2-D CrossRefGoogle Scholar
  7. Coumou D, Robinson A, Rahmstorf S (2013) Global increase in record-breaking monthly-mean temperatures. Clim Change 118(3):771–782. doi: 10.1007/s10584-012-0668-1 CrossRefGoogle Scholar
  8. Coumou D, Petoukhov V, Rahmstorf S, Petri S, Schellnhuber HJ (2014) Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. PNAS 111(34):12,331–12,336. doi: 10.1073/pnas.1412797111 CrossRefGoogle Scholar
  9. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29(2):251–275. doi: 10.1007/s00382-007-0233-1 CrossRefGoogle Scholar
  10. Eden JM, van Oldenborgh GJ, Hawkins E, Suckling EB (2015) A global empirical system for probabilistic seasonal climate prediction. Geosci Model Dev 8(12):3947–3973. doi: 10.5194/gmd-8-3947-2015. http://www.geosci-model-dev.net/8/3947/2015/
  11. Folland CK, Scaife AA, Lindesay J, Stephenson DB (2012) How potentially predictable is northern european winter climate a season ahead? Int J Climatol 32(6):801–818. doi: 10.1002/joc.2314 CrossRefGoogle Scholar
  12. Francis JA, Vavrus SJ (2012) Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39(L06):801. doi: 10.1029/2012GL051000 Google Scholar
  13. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Analytica Chimica Acta 185:1–17. doi: 10.1016/0003-2670(86)80028-9 CrossRefGoogle Scholar
  14. Gornott C, Wechsung F (2016) Statistical regression models for assessing climate impacts on crop yields: a validation study for winter wheat and silage maize in Germany. Agric Forest Meteorol 217:89–100. doi: 10.1016/j.agrformet.2015.10.005 CrossRefGoogle Scholar
  15. Haylock M, Hofstra N, Klein Tank A, Klok E, Jones P, New M (2008) A european daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113(D20):119. doi: 10.1029/2008JD10201 CrossRefGoogle Scholar
  16. He Y, Huang J, Ji M (2014) Impact of land-sea thermal contrast on interdecadal variation in circulation and blocking. Clim Dyn 43(12):3267–3279. doi: 10.1007/s00382-014-2103-y CrossRefGoogle Scholar
  17. Hess P, Brezowsky H (1977) Catalog of the general weather situations of Europe 1981–1976. German Meteorol Serv 113Google Scholar
  18. Inselberg A (1985) The plane with parallel coordinates. Vis Comput 1(2):69–91. doi: 10.1007/BF01898350 CrossRefGoogle Scholar
  19. Jain S, Lall U, Mann ME (1999) Seasonality and interannual variations of northern hemisphere temperature: equator-to-pole gradient and ocean-land contrast. J Clim 12(4):1086–1100. doi: 10.1175/1520-0442(1999) 012<1086:SAIVON>2.0.CO;2 CrossRefGoogle Scholar
  20. James PM (2007) An objective classification method for hess and brezowsky grosswetterlagen over europe. Theor Appl Climatol 88:17–42. doi: 10.1007/s00704-006-0239-3 CrossRefGoogle Scholar
  21. Jarlan L, Abaoui J, Duchemin B, Ouldbba A, Tourre YM, Khabba S, Le Page M, Balaghi R, Mokssit A, Chehbouni G (2014) Linkages between common wheat yields and climate in morocco (1982–2008). Int J Biometeorol 58(7):1489–1502. doi: 10.1007/s00484-013-0753-9 Google Scholar
  22. Kalnay E et al (1996) The ncep/ncar 40-year reanalysis project. Bull Am Meteor Soc 77:437–470CrossRefGoogle Scholar
  23. Kang IS, Jin EK, An KH (2006) Secular increase of seasonal predictability for the 20th century. Geophys Res Lett. doi: 10.1029/2005GL024499
  24. Knippertz P, Christoph M, Speth P (2003) Long-term precipitation variability in morocco and the link to the large-scale circulation in recent and future climates. Meteorol Atmos Phys 83(1):67–88. doi: 10.1007/s00703-002-0561-y CrossRefGoogle Scholar
  25. Kyselý J, Huth R (2006) Changes in atmospheric circulation over europe detected by objective and subjective methods. Theor Appl Climatol 85(1):19–36. doi: 10.1007/s00704-005-0164-x CrossRefGoogle Scholar
  26. Lehmann J, Coumou D, Frieler K (2015) Increased record-breaking precipitation events under global warming. Clim Change 132:501–515. doi: 10.1007/s10584-015-1434-y CrossRefGoogle Scholar
  27. Molteni F, King MP, Kucharski F, Straus DM (2011) Planetary-scale variability in the northern winter and the impact of land-sea thermal contrast. Clim Dyn 37(1):151–170. doi: 10.1007/s00382-010-0906-z CrossRefGoogle Scholar
  28. Petoukhov V, Rahmstorf SS, Petri, Schellnhuber HJ (2013) Quasiresonant amplification of planetary waves and recent northern hemisphere weather extremes. Proc Natl Acad Sci USA 110(14):5336–5341. doi: 10.1073/pnas.1222000110
  29. Prokoph A, Patterson RT (2004) Application of wavelet and regression analysis in assessing temporal and geographic climate variability: Eastern ontario, canada as a case study. Atmos Ocean 42(3):201–212. doi: 10.3137/ao.420304 CrossRefGoogle Scholar
  30. Rust HW, Richling A, Bissolli P, Ulbrich U (2015) Linking teleconnection patterns to european temperature - a multiple linear regression model. Meteorologische Zeitschrift 24(4):411–423. doi: 10.1127/metz/2015/0642 CrossRefGoogle Scholar
  31. Saha S et al (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208. doi: 10.1175/JCLI-D-12-00823.1
  32. Smoliak BV, Wallace JM, Stoelinga MT, Mitchell TP (2010) Application of partial least squares regression to the diagnosis of year-to-year variations in pacific northwest snowpack and Atlantic hurricanes. Geophys Res Lett. doi: 10.1029/2009GL041478
  33. Stock JH, Watson MW (2002) Forecasting using principal components from a large number of predictors. J Am Stat Assoc 97(460):1167–1179CrossRefGoogle Scholar
  34. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79:61–78. doi: 10.1175/1520-0477(1998)079 CrossRefGoogle Scholar
  35. Träger-Chatterjee C, Müller RW, Bendix J (2014) Analysis and discussion of atmospheric precursor of european heat summers. Adv Meteorol. doi: 10.1155/2014/427916
  36. Werner P, Gerstengarbe FW, Wechsung F (2008) Grosswetterlagenwetterlagen and precipitation trends in the elbe river catchment. Meteorologische Zeitschrift 17(1):061–066. doi: 10.1127/0941-2948/2008/0263 CrossRefGoogle Scholar
  37. Wold S, Sjöström M, Eriksson L (2001) Pls-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58(2):109–130. doi: 10.1016/S0169-7439(01)00155-1 CrossRefGoogle Scholar
  38. Zhang YL, Liu Y, Chuan-Xi (2014) Dynamic seasonal transition from winter to summer in the northern hemisphere stratosphere. Atmos Ocean Sci Lett 7(3):180. doi: 10.3878/j.issn.1674-2834.13.0082. http://159.226.119.58/aosl/EN/abstract/article_436.shtml

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations