Climate Dynamics

, Volume 50, Issue 7–8, pp 2753–2765 | Cite as

A new index for identifying different types of El Niño Modoki events

Article

Abstract

El Niño Modoki events can be further classified into El Niño Modoki I and II in terms of their opposite impacts on southern China rainfall (Wang and Wang, J Clim 26:1322–1338, 2013) and the Indian Ocean dipole mode (Wang and Wang, Clim Dyn 42:991–1005, 2014). The present paper develops an index to identify the types of El Niño events. The El Niño Modoki II (MII) index is defined as the leading principle component of multivariate empirical orthogonal function analysis of the normalized El Niño Modoki index, Niño4 index and 850 hPa relative vorticity anomalies averaged near the Philippine Sea during autumn. The MII index exhibits dominant variations on interannual (2–3 and 4–5 years) and decadal (10–20 years) timescales. El Niño Modoki II events can be well identified by using the MII index value being larger than 1 standard deviation. Further analyses and numerical model experiments confirm that the MII index can portray the major oceanic and atmospheric features of El Niño Modoki II events. The constructed MII index along with previous ENSO indices can be used for classifying and identifying all types of El Niño events. Because of distinct impacts induced by different types of El Niño events, the implication of the present study is that climate prediction and future climate projection under global warming can be improved by using the MII index and other indices to identify the types of El Niño events.

Keywords

ENSO El Niño Modoki Climate impacts 

Notes

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010403), the CAS/SAFEA International Partnership Program for Creative Research Teams, the National Natural Science Foundation of China (Grant Nos. 41422601, 41376025 and 41521005), the Pioneer Hundred Talents Program of the Chinese Academy of Sciences, the National Basic Research Program of China (2013CB430301), the National Program on Global Change and Air–Sea Interaction (GASIIPOVAI-04).

References

  1. Alexander M, Bladé I, Newman M, Lanzante J, Lau NC, Scott J (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231CrossRefGoogle Scholar
  2. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  3. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829CrossRefGoogle Scholar
  4. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  5. Braganza K, Gergis JL, Power SB, Risbey JS, Fowler AM (2009) A multiproxy index of the El Niño–Southern Oscillation, AD 1525–1982. J Geophys Res Atmos 114:D05106. doi: 10.1029/2008JD010896 CrossRefGoogle Scholar
  6. Capotondi A et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938CrossRefGoogle Scholar
  7. Chiodi AM, Harrison DE (2013) El Niño impacts on seasonal US atmospheric circulation, temperature, and precipitation anomalies: the OLR-event perspective. J Clim 26:822–837CrossRefGoogle Scholar
  8. Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276CrossRefGoogle Scholar
  9. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  10. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  11. Delcroix T, Picaut J (1998) Zonal displacement of the western equatorial Pacific “fresh pool”. J Geophys Res Oceans 103(C1):1087–1098CrossRefGoogle Scholar
  12. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central pacific El Niño and decadal climate change in the North Pacific ocean. Nat Geosci 3:762–765CrossRefGoogle Scholar
  13. Gent PR et al (2011) The community climate system model version 4. J Clim 24:4973–4991CrossRefGoogle Scholar
  14. Gergis J, Fowler A (2005) Classification of synchronous oceanic and atmospheric El Niño–Southern Oscillation (ENSO) events for palaeoclimate reconstruction. Int J Climatol 25:1541–1565CrossRefGoogle Scholar
  15. Hong CC, Li YH, Li T, Lee MY (2011) Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys Res Lett 38:L16712. doi: 10.1029/2011GL048821 Google Scholar
  16. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  17. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  18. Kao H, Yu J (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  19. Kim JS, Zhou W, Wang X, Jain S (2012) El Niño Modoki and the summer precipitation variability over South Korea: a diagnostic study. J Meteorol Soc Jpn 90:673–684CrossRefGoogle Scholar
  20. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  21. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi: 10.1029/2005GL022860 CrossRefGoogle Scholar
  22. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi: 10.1029/2010GL044007 Google Scholar
  23. Liu QY, Wang D, Wang X, Shu Y, Xie Q, Chen J (2014) Thermal variations in the South China Sea associated with the eastern and central Pacific El Niño events and their mechanisms. J Geophys Res Oceans 119:8955–8972CrossRefGoogle Scholar
  24. Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang M (2013) The mean climate of the community atmosphere model (CAM4) in forced SST and fully coupled experiments. J Clim 26:5150–5168CrossRefGoogle Scholar
  25. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706CrossRefGoogle Scholar
  26. Picaut J, Ioualalen M, Delcroix T, Masia F, Murtugudde R, Vialard J (2001) The oceanic zone of convergence on the eastern edge of the Pacific warm pool: a synthesis of results and implications for El Niño Southern Oscillation and biogeochemical phenomena. J Geophys Res Oceans 106(C2):2363–2386CrossRefGoogle Scholar
  27. Qu T, Yu JY (2014) ENSO indices from sea surface salinity observed by Aquarius and Argo. J Oceanogr 70:367–375CrossRefGoogle Scholar
  28. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  29. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analysis of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  30. Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi: 10.1029/2010GL046031 CrossRefGoogle Scholar
  31. Ropelewski CF, Jones PD (1987) An extension of the Tahiti–Darwin southern oscillation index. Mon Weather Rev 115:2161–2165CrossRefGoogle Scholar
  32. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2011) GPCC full data reanalysis version 6.0 at 1.0°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. doi: 10.5676/DWD_GPCC/FD_M_V6_100
  33. Singh A, Delcroix T, Cravatte S (2011) Contrasting the flavors of El Niño and Southern Oscillation using sea surface salinity observations. J Geophys Res Oceans 116:C06016. doi: 10.1029/2010JC006862 Google Scholar
  34. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704CrossRefGoogle Scholar
  35. Tan W, Wang X, Wang W, Wang C, Zuo J (2016) Different responses of sea surface temperature in the South China Sea to various El Niño events during Boreal Autumn. J Clim 29:1127–1142CrossRefGoogle Scholar
  36. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  37. Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701CrossRefGoogle Scholar
  38. Wang B (1992) The vertical structure and development of the ENSO anomaly mode during 1979–1989. J Atmos Sci 49:698–712CrossRefGoogle Scholar
  39. Wang C (2002) Atmospheric circulation cells associated with the El Niño–Southern Oscillation. J Clim 15:399–419CrossRefGoogle Scholar
  40. Wang B, Wang Y (1994) Development of El Niños during 1971–1992. Trans Oceanol Limnol 2:26–40Google Scholar
  41. Wang C, Wang X (2013) Classifying El Niño Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks. J Clim 26:1322–1338CrossRefGoogle Scholar
  42. Wang X, Wang C (2014) Different impacts of various El Niño events on the Indian Ocean Dipole. Clim Dyn 42:991–1005CrossRefGoogle Scholar
  43. Wang B, Wu R, Fu X (2000) Pacific–East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536CrossRefGoogle Scholar
  44. Wang B, Wu Z, Li J, Liu J, Chang CP, Ding Y, Wu G (2008) How to measure the strength of the East Asian summer monsoon. J Clim 21:4449–4463CrossRefGoogle Scholar
  45. Wang X, Zhou W, Li C, Wang D (2014) Comparison of the impact of two types of El Niño on tropical cyclone genesis over the South China Sea. Int J Climatol 34:2651–2660. doi: 10.1002/joc.3865 CrossRefGoogle Scholar
  46. Wang C, Deser C, Yu JY, DiNezio P, Clement A (2016) El Niño–Southern Oscillation (ENSO): a review. In: Coral Reefs of the Eastern Pacific, Glymn P, Manzello D, Enochs I (eds). Springer Science Publisher, Berlin, pp 85–106Google Scholar
  47. Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys Res Lett 24:779–782CrossRefGoogle Scholar
  48. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  49. Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. In: Proc of the 17th climate diagnostics workshop, pp 52–57Google Scholar
  50. Wolter K, Timlin MS (2011) El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int J Climatol 31:1074–1087CrossRefGoogle Scholar
  51. Xu K, Zhu C, He J (2012) Linkage between the dominant modes in Pacific subsurface ocean temperature and the two type ENSO events. Chin Sci Bull 57:3491–3496CrossRefGoogle Scholar
  52. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  53. Yeh SW, Wang X, Wang CZ, Dewitte B (2015) On the relationship between the North Pacific climate variability and the central Pacific El Niño. J Clim 28:663–677CrossRefGoogle Scholar
  54. Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720CrossRefGoogle Scholar
  55. Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884CrossRefGoogle Scholar
  56. Yu JY, Kao HY, Lee T, Kim ST (2011) Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theor Appl Climatol 103:337–344CrossRefGoogle Scholar
  57. Yu JY, Lu MM, Kim ST (2012) A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ Res Lett 7:034025CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.First Institute of OceanographyState Oceanic AdministrationQingdaoChina

Personalised recommendations