Climate Dynamics

, Volume 50, Issue 5–6, pp 2239–2255 | Cite as

Stratosphere-resolving CMIP5 models simulate different changes in the Southern Hemisphere

  • Gloria Rea
  • Angelo Riccio
  • Federico Fierli
  • Francesco Cairo
  • Chiara Cagnazzo


This work documents long-term changes in the Southern Hemisphere circulation in the austral spring–summer season in the Coupled Intercomparison Project Phase 5 models, showing that those changes are larger in magnitude and closer to ERA-Interim and other reanalyses if models include a dynamical representation of the stratosphere. Specifically, models with a high-top and included dynamical and—in some cases—chemical feedbacks within the stratosphere better simulate the lower stratospheric cooling observed over 1979–2001 and strongly driven by ozone depletion, when compared to the other models. This occurs because high-top models can fully capture the stratospheric large scale circulation response to the ozone-induced cooling. Interestingly, this difference is also found at the surface for the Southern Annular Mode (SAM) changes, even though all model categories tend to underestimate SAM trends over those decades. In this analysis, models including a proper dynamical stratosphere are more sensitive to lower stratospheric cooling in their tropospheric circulation response. After a brief discussion of two RCP scenarios, our study confirms that at least for large changes in the extratropical regions, stratospheric changes induced by external forcing have to be properly simulated, as they are important drivers of tropospheric climate variations.


Stratosphere Southern Hemisphere change CMIP5 models 



We acknowledge the World Climate Research Program (WCRP) Working Group on Climate Modeling, responsible for the CMIP5 activity. Gloria Rea is supported by StratoCLIM Framework Programme (FP7) Collaborative Project, Atmospheric Processes, Eco-Systems and Climate Change, ENV.2013.6.1-2, Grant Agreement no. 603557. Thank you to all modeling groups for producing and making available the simulations.

Supplementary material

382_2017_3746_MOESM1_ESM.pdf (118 kb)
Supplementary material 1 (PDF 118 KB)
382_2017_3746_MOESM2_ESM.pdf (209 kb)
Supplementary material 2 (PDF 201 KB)


  1. Arblaster J, Meehl GA (2006) Contributions of external forcings to southern annular mode trends. J Clim 19:2896–2905. doi: 10.1175/JCLI3774.1 CrossRefGoogle Scholar
  2. Arblaster J, Meehl G, Karoly DJ (2011) Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38(L02):701. doi: 10.1029/2010GL045384 Google Scholar
  3. Archer C, Caldeira K (2008) Historical trends in the jet streams. Geophys Res Lett 35(L08):803. doi: 10.1029/2008GL033614 Google Scholar
  4. Barnes E, Barnes N, Polvani LM (2014) Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. J Clim 27:852–867. doi: 10.1175/JCLI-D-13-00246.1 CrossRefGoogle Scholar
  5. Black RX, McDaniel BA (2007) Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J Atmos Sci 64:29682974. doi: 10.1175/JAS3979.1 Google Scholar
  6. Bony S, Colman R, Kattsov V, Allan R, Bretherton C, Dufresne JL, Hall HSA, Holland M, Ingram W, Randall D, Soden D, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482. doi: 10.1175/JCLI3819.1 CrossRefGoogle Scholar
  7. Bracegirdle TJ, Shuckburgh E, Sallee JB, Wang Z, Meijers A, Bruneau N, Phillips T, Wilcox LJ (2013) Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. Geophys Res Atmos 118:547–562. doi: 10.1002/jgrd.50153 CrossRefGoogle Scholar
  8. Cagnazzo C et al (2007) Impact of an improved shortwave radiation scheme in the MAECHAM5 general circulation model. Atmos Chem Phys 7:2503–2515. doi: 10.5194/acp-7-2503-2007 CrossRefGoogle Scholar
  9. Cagnazzo C, Manzini E, Fogli P, Vichi M, Davini P (2013) Role of stratospheric dynamics in the ozone-carbon connection in the Southern Hemisphere. Clim Dyn 41:3039–3054. doi: 10.1007/s00382-013-1745-5 CrossRefGoogle Scholar
  10. Ceppi P, Hwang YT, Frierson D, Hartmann DL (2012) Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys Res Lett 39(L19):708. doi: 10.1029/2012GL053115 Google Scholar
  11. Ceppi P, Zelinka M, Hartmann DL (2014) The response of the southern hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys Res Lett 41:3244–3250. doi: 10.1002/2014GL060043 CrossRefGoogle Scholar
  12. Charlton-Perez A, Baldwin MP, Birner T et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. Geophys Res Atmos 118:2494–2505. doi: 10.1002/jgrd.50125 CrossRefGoogle Scholar
  13. Ciasto L, Thompson DJ (2008) Observations of largescale ocean–atmosphere interaction in the Southern Hemisphere. J Clim 21:1244–1259. doi: 10.1175/2007JCLI1809.1 CrossRefGoogle Scholar
  14. Cionni I, Eyring V, Lamarque J, Randel W, Stevenson D, Wu F, Bodeker G, Shepherd T, Shindell D, Waugh DW (2011) Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos Chem Phys 11:11,267–11,292. doi: 10.5194/acp-11-11267-2011 CrossRefGoogle Scholar
  15. Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  16. Eyring V et al (2013) Long-term ozone changes and associated climate impacts in CMIP5 simulations. J Geophys Res Atmos 118:5029–5060. doi: 10.1002/jgrd.50316 CrossRefGoogle Scholar
  17. Fogt R, Perlwitz J, Monaghan A, Bromwich D, Jones J, Marshall GJ (2009) Historical SAM variability. Part II: Twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J Clim 22:5346–5365. doi: 10.1175/2009JCLI2786.1 CrossRefGoogle Scholar
  18. Forster D et al (2011) Evaluation of radiation scheme performance within chemistry climate models. J Geophys Res 116(D10):302. doi: 10.1029/2010JD015361 CrossRefGoogle Scholar
  19. Gerber E et al (2012) Assessing and understanding the impact of stratospheric dynamics and variability on the earth system. Bull Am Meteorol Soc 93:845–859. doi: 10.1175/BAMS-D-11-00145.1 CrossRefGoogle Scholar
  20. Gerber E, Son SW (2014) Quantifying the summertime response of the austral jet stream and Hadley cell to stratospheric ozone and greenhouse gases. J Clim 27:5538–5559. doi: 10.1175/JCLI-D-13-00539.1 CrossRefGoogle Scholar
  21. Gillett N, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett 40:1189–1193. doi: 10.1002/grl.50249 CrossRefGoogle Scholar
  22. Hall A, Visbeck M (2002) Synchronous variability in the Southern Hemisphere atmosphere, sea ice and ocean resulting from the annular mode. J Clim 15:3043–3057. doi: 10.1175/1520-0442(2000) 013<3940:ASPTIT>2.0.CO;2 CrossRefGoogle Scholar
  23. Hines K, Bromwich D, Marshall GJ (2000) Artificial surface pressure trends in the NCEP-NCAR reanalysis over the Southern Ocean and Antarctica. J Clim 13:3940–3952. doi: 10.1175/1520-0442(2000) 013<3940:ASPTIT>2.0.CO;2 CrossRefGoogle Scholar
  24. Hurrell J, Van Loon H (1994) A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus A 46:325–338. doi: 10.1034/j.1600-0870.1994.t01-1-00007.x CrossRefGoogle Scholar
  25. Ivy SD, Solomon S, Rieder H (2016) Radiative and dynamical influences on polar stratospheric temperature trends. J Clim 29:49274938. doi: 10.1175/JCLI-D-15-0503.1 CrossRefGoogle Scholar
  26. Kalnay E et al (2016) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437471. doi: 10.1175/1520-0477(1996) 077<0437:TNYRP>2.0.CO;2 Google Scholar
  27. Kidston J, Gerber EP (2010) Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys Res Lett 37(L09):708. doi: 10.1029/2010GL042873 Google Scholar
  28. Kobayashi C et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93(1):5–48CrossRefGoogle Scholar
  29. Kushner P, Held I, Delworth TL (2001) Southern Hemisphere atmospheric circulation response to global warming. J Clim 14:2238–2249. doi: 10.1175/1520-0442(2001) 014<0001:SHACRT>2.0.CO;2 CrossRefGoogle Scholar
  30. Limpasuvan V, Hartmann DL (2000) Wave-maintained annular modes of climate variability. J Clim 13:4414–4429. doi: 10.1175/1520-0442(2000) 013<4414%3AWMAMOC>2.0.CO%3B2 CrossRefGoogle Scholar
  31. Lorenz V, Hartmann DL (2001) Eddy-zonal flow feedback in the Southern Hemisphere. Atmos Sci 58:33123327CrossRefGoogle Scholar
  32. Mahlman J, Pinto J, Umscheid LJ (1994) Transport, radiative and dynamical effects of the Antarctic ozone hole: a GFDL -SKYHI-model experiment. J Atmos Sci 51:489–508. doi: 10.1175/1520-0469(1994) 051<0489:TRADEO>2.0.CO;2 CrossRefGoogle Scholar
  33. Manzini E et al (2014) Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J Geophys Res Atmos 119:7979–7998. doi: 10.1002/2013JD021403 CrossRefGoogle Scholar
  34. Manzini E, Steil B, Bruhl C, Giorgetta MA, Kruger K (2003) A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling. J Geophys Res 108:ACL10–ACL11. doi: 10.1029/2002JD002977 CrossRefGoogle Scholar
  35. Marshall G (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 CrossRefGoogle Scholar
  36. Maycock A (2016) The contribution of ozone to future stratospheric temperature trends. Geophys Res Lett 16:609–4616. doi: 10.1002/2016GL068511 Google Scholar
  37. McLandress C, Shepherd T, Scinocca J, Plummer D, Sigmond M, Jonsson A, Reader MC (2011) Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J Clim 24:1850–1868. doi: 10.1175/2010JCLI3958.1 CrossRefGoogle Scholar
  38. Meehl G, Covey C, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi: 10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  39. Ogawa F, Omrani NE, Nishii K, Nakamura H, Keenlyside N (2015) Ozone-induced climate change propped up by the Southern Hemisphere oceanic front. Geophys Res Lett 42:10,056–10,063. doi: 10.1002/2015GL066538 CrossRefGoogle Scholar
  40. Orr A, Bracegirdle T, Hosking SJ (2012) Possible dynamical mechanisms for Southern Hemisphere climate change due to the ozone hole. J Atmos Sci 69:2917–2932. doi: 10.1175/JAS-D-11-0210.1 CrossRefGoogle Scholar
  41. Pennel C, Reichler T (2010) On the effective number of climate models. J Clim 24:2358–2367. doi: 10.1175/2010JCLI3814.1 CrossRefGoogle Scholar
  42. Perlwitz J, Pawson S, Fogt R, Nielsen J, Neff WD (2008) Impact of stratospheric ozone recovery on Antarctic climate. Geophys Res Lett 35(L08):714. doi: 10.1029/2008GL033317 Google Scholar
  43. Polvani L, Waugh D, Correa G, Son SW (2011) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Climate 24:795–812. doi: 10.1175/2010JCLI3772.1 CrossRefGoogle Scholar
  44. Randel W, Wu F (1999) A stratospheric ozone trends data set for global modeling studies. Geophys Res Lett 26:3089–3092. doi: 10.1029/1999GL900615 CrossRefGoogle Scholar
  45. Rienecker M et al (2011) Merra: Nasas modern-era retrospective analysis for research and applications. J Clim 24:3624–3648CrossRefGoogle Scholar
  46. Seidel D, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res 112(D20):113. doi: 10.1029/2007JD008861 CrossRefGoogle Scholar
  47. Seidel D, Fu Q, Randel W, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24. doi: 10.1038/ngeo.2007.38 CrossRefGoogle Scholar
  48. Shaw T, Shepherd T (2007) Angular momentum conservation and gravity wave drag parameterization: implications for climate models. J Atmos Sci 64:190–203. doi: 10.1175/JAS3823.1 CrossRefGoogle Scholar
  49. Sheshandri A, Plumb RA, Gerber P (2015) Seasonal variability of the polar stratospheric vortex in an idealized AGCM with varying tropospheric wave forcing. J Atmos Sci 72:2248–2266. doi: 10.1175/JAS-D-14-0191.1 CrossRefGoogle Scholar
  50. Sigmond M, Fyfe JC (2014) The Antarctic sea ice response to the ozone hole in climate models. J Clim 27:1336–1342. doi: 10.1175/JCLI-D-13-00590.1 CrossRefGoogle Scholar
  51. Simmonds I (2015) Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35-year period 1979–2013. Ann Glaciol 56:18–28. doi: 10.3189/2015AoG69A909 CrossRefGoogle Scholar
  52. Simpson I, Blackburn M, Haigh J, Sparrow S (2012) A mechanism for the effect of tropospheric jet structure on the annular mode-like response to stratospheric forcing. J Atmos Sci 69:2152–2170. doi: 10.1175/JAS-D-11-0188.1 CrossRefGoogle Scholar
  53. Son SW et al (2010) Impact of stratospheric ozone on the Southern Hemisphere circulation changes: a multimodel assessment. J Geophys Res 115:D00M07. doi: 10.1029/2010JD014271 CrossRefGoogle Scholar
  54. Son SW, Polvani L, Waugh D, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Shepherd T, Shibata K (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320:1486–1489. doi: 10.1126/science.1155939 CrossRefGoogle Scholar
  55. Taylor K, Stouffer R, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  56. Thomas J, Waugh DW, Gnanadesikan A (2015) Southern Hemisphere extratropical circulation: recent trends and natural variability. Geophys Res Lett 42:5508–5515. doi: 10.1002/2015GL064521 CrossRefGoogle Scholar
  57. Thompson D, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899. doi: 10.1126/science.1069270 CrossRefGoogle Scholar
  58. Thompson D, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749. doi: 10.1038/ngeo1296 CrossRefGoogle Scholar
  59. Trenberth K, Olson JG (1989) Temperature trends at the south pole and McMurdo sound. J Clim 2:1196–1206. doi: 10.1175/1520-0442(1989) 002<1196:TTATSP>2.0.CO;2 CrossRefGoogle Scholar
  60. Uppala S et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  61. Waugh D et al (2013) Recent changes in the ventilation of the southern oceans. Science 568Google Scholar
  62. Waugh D, Randel W, Pawson S, Newman P, Nash ER (1999) Persistence of the lower stratospheric polar vortices. J Geophys Res 104:27,191–27,201. doi: 10.1029/1999JD900795 CrossRefGoogle Scholar
  63. Wilcox L, Charlton-Perez A, Gray LJ (2012) Trends in Austral jet position in ensembles of high- and low-top CMIP5 models. J Geophys Res 117(D13):115. doi: 10.1029/2012JD017597 CrossRefGoogle Scholar
  64. Zhou S, Gelman M, Miller A, McCormack JP (2000) An inter-hemisphere comparison of the persistent stratospheric polar vortex. Geophys Res Lett 27:1123–1126. doi: 10.1029/1999GL011018 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Istituto di Scienze dell’Atmosfera e del Clima del CNR, ISAC-CNRRomeItaly
  2. 2.Department of Science and TechnologyParthenope University of NaplesNaplesItaly

Personalised recommendations