Skip to main content

Advertisement

Log in

Interannual tropical Pacific sea surface temperature anomalies teleconnection to Northern Hemisphere atmosphere in November

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We investigate the Northern Hemisphere atmospheric circulation anomalies associated to the sea surface temperature (SST) anomalies that are related to the eastern-Pacific and central-Pacific El Nino-Southern Oscillations in the late autumn (November). This research is motivated by the need for improving understanding of the autumn climate conditions which can impact on winter climate, as well as the relative lack of study on the boreal autumn climate processes compared to winter. Using reanalysis and SST datasets available from the late nineteenth century through the recent years, we found that there are two major atmospheric responses; one is a hemispheric-wide wave number-4 pattern, another has a more annular pattern. Both of these project on the East Atlantic pattern (southward-shifted North Atlantic Oscillation) in the Atlantic sector. Which of the patterns is active is suggested to depend on the background mean flow, with the annular anomaly active in the most recent decades, while the wave-4 pattern in the decades before. This switch is associated with a change of correlation sign in the North Pacific. We discuss the robustness of this finding. The ability of two atmospheric general circulation models (ICTP-AGCM and ECHAM-AGCM) to reproduce the teleconnections is also examined. Evidence provided shows that the wave-4 pattern and the East Atlantic pattern signals can be reproduced by the models, while the shift from this to an annular response for the recent years is not found conclusively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Nino Modoki and its possible teleconnection. J Geophys Res (Oceans) 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbinger of anomalous weather regimes. Science 294:581–584

    Article  Google Scholar 

  • Barnes EA, Polvani L (2013) Response of the midlatitude jets, and their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26:7117–7135. doi:10.1175/JCLI-D-12-00536.1

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Bell CJ, Gray LJ, Charlton-Perez AJ, Joshi MM, Scaife AA (2009) Stratospheric communication of El Nino teleconnections to European winter. J Clim 22:4083–4096. doi:10.1175/2009JCLI2717.1

    Article  Google Scholar 

  • Bladé I, Newman M, Alexander MA, Scott JD (2008) The late fall extratropical response to ENSO: Sensitivity to coupling and convection in the tropical West Pacific. J Clim 21:6101–6117. doi:10.1175/2008JCLI1612.1

    Article  Google Scholar 

  • Branstator G (2002) Circumpolar teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J Clim 15:1893–1910

    Article  Google Scholar 

  • Bueh C, Nakamura H (2007) Scandinavian pattern and its climatic impact. Q J R Meteorol Soc 133:2117–2131. doi:10.1002/qj.173

    Article  Google Scholar 

  • Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238. doi:10.1175/2008JCLI2549.1

    Article  Google Scholar 

  • Chen WY, van den Dool H (2003) Sensitivity of teleconnection patterns to the sign of their primary action center. Mon Weather Rev 131:2885–2899

    Article  Google Scholar 

  • Compo GP, coauthors (2011) The Twentieth Century Reanalysis Project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x

    Article  Google Scholar 

  • Garcia-Herrera R, Calvo N, Garcia RR, Giorgetta MA (2006) Propagation of ENSO temperature signals into the middle atmosphere: a comparison of two general circulation models and ERA-40 reanalysis data. J Geophys Res (Atmospheres) 111:D06101. doi:10.1029/2005JD006061

    Google Scholar 

  • Garcia-Serrano J, Haarsma RJ (2016) Non-annular, hemispheric signature of winter North Atlantic Oscillation. Clim Dyn. doi:10.1007/s00382-016-3292-3

    Google Scholar 

  • Garcia-Serrano J, Frankignoul C, Gastineau G, de la Camara A (2015) On the predictability of the winter Euro-Atlantic climate: lagged influence of autumn Arctic sea ice. J Clim 28:5195–5216. doi:10.1175/JCLI-D-14-00472.1

    Article  Google Scholar 

  • Garfinkel CI, Hartmann HL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:D18114. doi:10.1029/2008JD009920

    Article  Google Scholar 

  • Garfinkel CI, Hurwitz MM, Waugh DW, Butler AH (2013) Are the teleconnections of Central Pacific and Eastern Pacific El Nino distinct in boreal wintertime? Clim Dyn 41:1835–1852. doi:10.1007/s00382-012-1570-2

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulations. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Graf H-F, Zanchettin D (2012) Central Pacific El Nino, the “subtropical bridge,” and Eurasian climate. J Geophys Res (Atmospheres) 117:D01102. doi:10.1029/2011JD016493

    Google Scholar 

  • Hegyi BM, Deng Y (2011) A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116:D20121. doi:10.1029/2011JD016001

    Article  Google Scholar 

  • Herceg-Bulić I, Branković Č, Kucharski F (2012) Winter ENSO teleconnections in a warmer climate. Clim Dyn 38:1593–1613. doi:10.1007/s00382-010-0987-8

    Article  Google Scholar 

  • Herceg-Bulić I, Mezzina B, Kucharski F, Ruggieri P, King MP (2017) Wintertime ENSO influence on late spring European climate: the stratospheric response and the role of North Atlantic SST. Int J Climatol. doi:10.1002/joc.4980

    Google Scholar 

  • Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50:1661–1671

    Article  Google Scholar 

  • Hoskins BJ, Karoly D (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Jin F, Hoskins BJ (1995) The direct response to tropical heating in a baroclinc atmosphere. J Atmos Sci 52(3):307–319

    Article  Google Scholar 

  • Kalnay E, coauthors (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–470

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632. doi:10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Kidston J, Gerber EP (2010) Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys Res Lett 37:L09708. doi:10.1029/2010GL042873

    Google Scholar 

  • Kim B-M, Son S-W, Min S-K, Jeong J-H, Kim S-J, Zhang X, Shim T, Yoon J-H (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat Commun. doi:10.1038/ncomms5646

    Google Scholar 

  • King MP, Garcia-Serrano J (2016) Potential ocean-atmosphere preconditioning of late autumn Barents-Kara sea ice concentration anomaly. Tellus A 68:28580. doi:10.3402/tellusa.v68.28580

    Article  Google Scholar 

  • King MP, Kucharski F, Molteni F (2010) The roles of external forcings and internal variabilities in the Northern Hemisphere atmospheric circulation change from the 1960s to the 1990s. J Clim 23:6200–6220. doi:10.1175/2010JCLI3239.1

    Article  Google Scholar 

  • King MP, Hell M, Keenlyside N (2016) Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Clim Dyn 46:1185–1195. doi:10.1007/s00382-015-2639-5

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 Reanalysis: General specifications and basic characteristics. J Met Soc Jap 93:5–48. doi:10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Kodera K (2010) Change in the ENSO teleconnection characteristics in the boreal winter. SOLA 6A:021–024. doi:10.2151/sola.6A-006

    Article  Google Scholar 

  • Kucharski F, Molteni F, King MP, Farneti R, Kang I-S, Feudale L (2013) On the need of intermediate complexity general circulation models—a “SPEEDY” example. Bull Amer Meteor Soc 94:25–30. doi:10.1175/BAMS-D-11-00238.1

    Article  Google Scholar 

  • Kug J-S, Jin FF, An S-I (2009) Two types of El Nino Events: cold tongue El Nino and warm pool El Nino. J Clim 22:1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Kug J-S, An S-I, Ham Y-G, Kang I-S (2010) Changes in El Nino and La Nina teleconnections over North Pacific-America in the global warming simulations. Theor Appl Climatol 100:275–282. doi:10.1007/s00704-009-0183-0

    Article  Google Scholar 

  • Latif M, Keenlyside N, Bader J (2007) Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys Res Lett 34:L01710. doi:10.1029/2006GL02796

    Article  Google Scholar 

  • Lee T, McPhaden M (2010) Increasing intensity of El Nino in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Lopéz-Parages J, Rodriguez-Fonseca B (2012) Multidecadal modulation of El Nino influence on the Euro-Mediterranean rainfall. Geophys Res Lett 39:L02704. doi:10.1029/2011GL050049

    Article  Google Scholar 

  • Lopéz-Parages J, Rodriguez-Fonseca B, Terray L (2014) A mechanism for the multidecadal modulation of ENSO teleconnection with Europe. Clim Dyn. doi:10.1007/s00382-014-2319-x

    Google Scholar 

  • Maycock AC, Keeley SPE, Charlton-Perez AJ, Doblas-Reyes FJ (2011) Stratospheric circulation in seasonal forecasting models: implications for seasonal prediction. Clim Dyn 36:309–321. doi:10.1007/s00382-009-0665-x

    Article  Google Scholar 

  • Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parameterizations. I: model climatology and variability in multi-decadal experiments. Clim Dyn 20:175–191. doi:10.1007/s00382-002-0268-2.

    Article  Google Scholar 

  • Nakamura T, Yamazaki K, Iwamoto K, Honda M, Miyoshi Y, Ogawa Y, Ukita J (2015) A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J Geophys Res (Atmospheres) 120:3209–3227. doi:10.1002/2014JD022848

    Article  Google Scholar 

  • Nakamura T, Yamazaki K, Iwamoto K, Honda M, Miyoshi Y, Ogawa Y, Tomikawa Y, Ukita J (2016) The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys Res Lett 43:3494–3501. doi:10.1002/2016GL068330

    Article  Google Scholar 

  • Orsolini YJ, Senan R, Benestad RE, Melsom A (2012) Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean-atmosphere hindcasts. Clim Dyn 38:2437–2448. doi:10.1007/s00382-011-1169-z

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Riddle EE, Butler AH, Furtado JC, Cohen JL, Kumar A (2013) CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Clim Dyn 41:1099–1116. doi:10.1007/s00382-013-1850-5.

    Article  Google Scholar 

  • Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45:1228–1251

    Article  Google Scholar 

  • Scaife AA, coauthors (2014) Skillful long-range of European and North American winters. Geophys Res Lett 41:2514–2515. doi:10.1002/2014GL059637

    Article  Google Scholar 

  • Scaife AA, Comer RE, Dunstone NJ, Knight JR, Smith DM, MacLachlan C, Martin N, Peterson, Rowlands D, Carroll EB, Belcher S, Slingo J (2016) Tropical rainfall, Rossby waves and regional winter climate predictions. Q J R Meteorol Soc. doi:10.1002/qj.2910

    Google Scholar 

  • Schneider EK, Fennessy MJ, Kinter JL III (2009) A statistical-dynamical estimate of winter ENSO teleconnections in a future climate. J Clim 22:6624–6638. doi:10.1175/2009JCLI3147.1

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi:10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Stockdale TN, Molteni F, Ferranti L (2015) Atmospheric initial conditions and the predictability of the Arctic Oscillation. Geophys Res Lett 42:1173–1179. doi:10.1002/2014GL062681

    Article  Google Scholar 

  • Sun L, Deser C, Tomas RA (2015) Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J Clim 28:7824–7845. doi:10.1175/JCLI-D-15-0169.1

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase independent wave-activity flux of stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  • Teng H, Branstator G (2012) A zonal wavenumber-3 pattern of Northern Hemisphere wintertime planetary wave variability at high latitudes. J Clim 25:6756–6769. doi:10.1175/JCLI-D-11-00664.1

    Article  Google Scholar 

  • van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32:L15701. doi:10.1029/2005GL023110

    Article  Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

We thank I. Bladé and B. Rodriguez-Fonseca for beneficial discussion. Comments and suggestions from the reviewers have helped to improve this study. We acknowledge the NOAA-CIRES twentieth Century Reanalysis V2, UK Met Office HadISST, NCEP-NCAR Reanalysis, and the Japanese 55-year Reanalysis for the data used in this study. This study is supported partly by the Research Council of Norway’s KLIMAFORSK program (Project No. 255027). The work of Ivana Herceg-Bulić has been supported in part by the Croatian Science Foundation under project 2831.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin P. King.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 3828 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, M.P., Herceg-Bulić, I., Kucharski, F. et al. Interannual tropical Pacific sea surface temperature anomalies teleconnection to Northern Hemisphere atmosphere in November. Clim Dyn 50, 1881–1899 (2018). https://doi.org/10.1007/s00382-017-3727-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3727-5

Keywords

Navigation