Climate Dynamics

, Volume 50, Issue 5–6, pp 1625–1638 | Cite as

Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development

  • Yi-Kai Wu
  • Lin Chen
  • Chi-Cherng Hong
  • Tim Li
  • Cheng-Ta Chen
  • Lu Wang
Article

Abstract

In the boreal spring of 2014, the oceanic and atmospheric conditions were favorable for an El Niño's development. It was predicted that in 2014, a super El Niño or at least a regular El Niño with normal magnitude, would initiate. However, the growth rate of the sea surface temperature anomaly (SSTA) in the equatorial eastern Pacific suddenly declined in the boreal summer. The physical processes responsible for the termination of the 2014 El Niño were addressed in this study. We hypothesized that a meridional dipole of SSTA, characterized by a pronounced warm SSTA over the eastern North Pacific (ENP) and cold SSTA over the eastern South Pacific (ESP), played a crucial role in blocking the 2014 El Niño’s development. The observational analysis revealed that the meridional dipole of SSTA and the relevant anomalous cross-equatorial flow in the tropical eastern Pacific, induced anomalous westward (\({u^\prime }<0\)) and upwelling (\({w^\prime }>0\)) currents in the equatorial eastern Pacific, leading to negative anomalous zonal advection term (\(- {u^\prime }\partial \overline T /\partial x<0\)) and anomalous upwelling advection term (\(- {w^\prime }\partial \overline T /\partial z<0\)). Additionally, the anomalous cross-equatorial flow also induced northward meridional current anomalies that transported subtropical cold water to the equator. All the changes of the oceanic dynamic terms collectively caused negative SSTA tendency in the boreal summer, and thus killed off the budding 2014 El Niño. The idealized numerical experiments further confirmed that the 2014 El Niño’s development could be suppressed by the meridional dipole of SSTA, and both the ENP pole and ESP pole make a contribution.

Keywords

ENSO 2014–2015 El Niño Meridional dipole of SSTA in eastern Pacific Cross-equatorial flow Ocean–atmosphere interaction 

Notes

Acknowledgements

We would like to thank the editor and three anonymous reviewers for their insightful suggestions and comments. The data for this paper are from Met Office Hadley Centre sea ice and SST data sets, ECMWF ERA-Interim atmospheric fields and NCEP GODAS oceanic fields. CCH was supported by MOST-104-2111-M-845-002, and CTC was supported by MOST-105-2119-M-003-004 and MOST-104-2621-M-865-001. This work was also supported by NSF AGS-1565653, NSFC project 41630423, NSFC Grant 41376002/41606011/41530426/41606033, CAS Strategic Priority Project XDA11010105, and JAMSTEC JIJI Theme1 project. This is SOEST contribution number 10010 and IPRC contribution number 1252.

Supplementary material

382_2017_3710_MOESM1_ESM.pdf (3.9 mb)
Supplementary material 1 (PDF 3966 KB)

References

  1. Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23:2885–2901CrossRefGoogle Scholar
  2. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4 Quarterly. J R Meteorol Soc 139:1132–1161CrossRefGoogle Scholar
  3. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP. In: The Pacific Ocean. Eighth symposium on integrated observing and assimilation system for atmosphere, ocean, and land surface, AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, DC, pp 11–15Google Scholar
  4. Bellenger H, Guilyardi É, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018CrossRefGoogle Scholar
  5. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829CrossRefGoogle Scholar
  6. Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  7. Bond NA, Cronin MF, Freeland H, Mantua N (2015) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett 42:3414–3420CrossRefGoogle Scholar
  8. Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832CrossRefGoogle Scholar
  9. Chang P, Philander SG (1994) A coupled ocean-atmosphere instability of relevance to the seasonal cycle. J Atmos Sci 51:3627–3648CrossRefGoogle Scholar
  10. Chang P et al (2007) Pacific meridional mode and El Niño—Southern oscillation. Geophys Res Lett 34:L16608. doi: 10.1029/2007GL030302 CrossRefGoogle Scholar
  11. Chen L, Yu Y-Q (2014) Preliminary evaluations of ENSO-related cloud and water vapor feedbacks in FGOALS. In: Zhou T, Yu Y, Liu Y, Wang B (eds) Flexible global ocean–atmosphere–land system model. Springer earth system sciences. Springer, Berlin, pp 189–197. doi: 10.1007/978-3-642-41801-3_23 Google Scholar
  12. Chen D, Zebiak SE, Cane MA, Busalacchi AJ (1997) Initialization and predictability of a coupled ENSO forecast model*. Mon Weather Rev 125:773–788CrossRefGoogle Scholar
  13. Chen L, Yu Y, Sun D-Z (2013) Cloud and water vapor feedbacks to the El Niño warming: are they still biased in CMIP5 models? J Clim 26:4947–4961CrossRefGoogle Scholar
  14. Chen L, Li T, Yu Y (2015) Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models*. J Clim 28:3250–3274CrossRefGoogle Scholar
  15. Chen L, Li T, Behera SK, Doi T (2016a) Distinctive precursory air–sea signals between regular and super El Niños. Adv Atmos Sci 33:996–100. doi: 10.1007/s00376-016-5250-8 CrossRefGoogle Scholar
  16. Chen L, Yu Y, Zheng W (2016b) Improved ENSO simulation from climate system model FGOALS-g1. 0 to FGOALS-g2. Clim Dyn 47: 2617–2634. doi: 10.1007/s00382-016-2988-8 CrossRefGoogle Scholar
  17. Chen L, Li T, Wang B, Wang L (2017a) Formation mechanism for 2015/16 Super El Niño. Sci Rep. doi: 10.1038/s41598-017-02926-3
  18. Chen L, Li T, Yu Y, Behera SK (2017b) A possible explanation for the divergent projection of ENSO amplitude change under global warming. Clim Dyn. doi: 10.1007/s00382-017-3544-x Google Scholar
  19. Chiang JC, Vimont DJ (2004) Analogous pacific and atlantic meridional modes of tropical atmosphere-ocean variability*. J Clim 17:4143–4158CrossRefGoogle Scholar
  20. Chiew FH, Piechota TC, Dracup JA, McMahon TA (1998) El Niño/Southern oscillation and Australian rainfall, streamflow and drought: links and potential for forecasting. J Hydrol 204:138–149CrossRefGoogle Scholar
  21. Chiodi AM, Harrison DE (2015) Equatorial pacific easterly wind surges and the onset of La Niña Events*. J Clim 28:776–792CrossRefGoogle Scholar
  22. Chou C, Huang L-F, Tu J-Y, Tseng L, Hsueh Y-C (2009) El Niño impacts on precipitation in the western North Pacific-East Asian sector. J Clim 22:2039–2057CrossRefGoogle Scholar
  23. Dee D et al (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  24. Di Lorenzo E, Mantua N (2016) Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat Clim Change Adv Online Publ doi: 10.1038/nclimate3082 Google Scholar
  25. Ding R, Li J (2012) Influences of ENSO teleconnection on the persistence of sea surface temperature in the tropical Indian Ocean. J Clim 25:8177–8195CrossRefGoogle Scholar
  26. Ding R, Li J, Tseng Y-h (2015a) The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim Dyn 44:2017–2034. doi: 10.1007/s00382-014-2303-5 CrossRefGoogle Scholar
  27. Ding R, Li J, Tseng Yh, Sun C, Guo Y (2015b) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res 120:27–45. doi: 10.1002/2014jd022221 Google Scholar
  28. Ding R, Li J, Tseng Yh, Ruan C (2015c) Influence of the North Pacific Victoria mode on the Pacific ITCZ summer precipitation. J Geophys Res 120:964–979. doi: 10.1002/2014JD022364 Google Scholar
  29. Ding R, Li J, Tseng Y-h, Sun C, Zheng F (2016) Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Clim Dyn. doi: 10.1007/s00382-016-3389-8 Google Scholar
  30. Fraedrich K (1994) An ENSO impact on Europe? Tellus A 46:541–552CrossRefGoogle Scholar
  31. Hansen JW, Hodges AW, Jones JW (1998) ENSO Influences on agriculture in the Southeastern United States*. J Clim 11:404–411CrossRefGoogle Scholar
  32. Harrison DE, Vecchi GA (1997) Westerly wind events in the Tropical Pacific, 1986–95*. J Clim 10:3131–3156CrossRefGoogle Scholar
  33. Hartmann DL (2015) Pacific sea surface temperature and the winter of 2014. Geophys Res Lett 42:1894–1902CrossRefGoogle Scholar
  34. Hong LC, Jin FF (2014) A southern hemisphere booster of super El Niño. Geophys Res Lett 41:2142–2149 CrossRefGoogle Scholar
  35. Hong C-C, Li T, Kug J-S (2008) Asymmetry of the Indian Ocean dipole. Part I: observational analysis*. J Clim 21:4834–4848CrossRefGoogle Scholar
  36. Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA 113:2005–2010CrossRefGoogle Scholar
  37. Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  38. Jin FF, An SI (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26:2989–2992CrossRefGoogle Scholar
  39. Levine AF, McPhaden MJ (2016) How the July 2014 easterly wind burst gave the 2015-6 El Niño a head start. Geophys Res Lett 43:6503–6510CrossRefGoogle Scholar
  40. Li T (1997) Phase transition of the El Niño-Southern Oscillation: A stationary SST mode. J Atmos Sci 54:2872–2887CrossRefGoogle Scholar
  41. Li T, Philander SGH (1996) On the annual cycle of the eastern equatorial Pacific. J Clim 9:2986–2998CrossRefGoogle Scholar
  42. Li T, Zhang Y, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:2110. doi: 10.1029/2002GL015789 Google Scholar
  43. Li L et al. (2013) The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv Atmos Sci 30:543–560CrossRefGoogle Scholar
  44. Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  45. Luo J-J, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497CrossRefGoogle Scholar
  46. Maeda S, Urabe Y, Takemura K, Yasuda T, Tanimoto Y (2016) Active role of the ITCZ and WES feedback in hampering the growth of the expected full-fledged El Niño in 2014. SOLA 12:17–21CrossRefGoogle Scholar
  47. McPhaden MJ (1999) Genesis and evolution of the 1997-98 El Niño. Science 283:950–954CrossRefGoogle Scholar
  48. McPhaden MJ (2015) Playing hide and seek with El Niño. Nat lim Change 5: 791–795CrossRefGoogle Scholar
  49. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745CrossRefGoogle Scholar
  50. Menkes CE, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G (2014) About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys Res Lett 41:6476–6483CrossRefGoogle Scholar
  51. Min Q, Su J, Zhang R, Rong X (2015) What hindered the El Niño pattern in 2014? Geophys Res Lett 42:6762–6770CrossRefGoogle Scholar
  52. Philander SGH (1990) El Nino, La Nina and the Southern Oscillation. Academic Press, New York, pp 293Google Scholar
  53. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  54. Rayner N et al. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108. doi: 10.1029/2002JD002670
  55. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  56. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015CrossRefGoogle Scholar
  57. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  58. Su J, Xiang B, Wang B, Li T (2014) Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys Res Lett 41(24):9058–9064CrossRefGoogle Scholar
  59. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287CrossRefGoogle Scholar
  60. Tollefson J (2014) El Niño tests forecasters. Nature 508:20–21CrossRefGoogle Scholar
  61. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  62. Tseng Y-h, Hu Z-Z, Ding R, Chen H-c (2016) An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Clim Dyn. doi: 10.1007/s00382-016-3188-2 Google Scholar
  63. Vecchi GA, Harrison DE (2000) Tropical Pacific Sea surface temperature anomalies, El Niño, and equatorial westerly wind events*. J Clim 13:1814–1830CrossRefGoogle Scholar
  64. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926CrossRefGoogle Scholar
  65. Vimont DJ, Battisti DS, Hirst AC (2003a) The seasonal footprinting mechanism in the CSIRO general circulation models*. J Clim 16:2653–2667CrossRefGoogle Scholar
  66. Vimont DJ, Wallace JM, Battisti DS (2003b) The seasonal footprinting mechanism in the Pacific: implications for ENSO*. J Clim 16:2668–2675CrossRefGoogle Scholar
  67. Wang L, Chen L (2016) Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dyn Atmos Oceans 76:116–126. doi: 10.1016/j.dynatmoce.2016.10.004 CrossRefGoogle Scholar
  68. Wang L, Chen L (2017a) Effect of basic state on seasonal variation of convectively coupled Rossby wave. Dyn Atmos Oceans 77:54–63. doi: 10.1016/j.dynatmoce.2016.11.002 CrossRefGoogle Scholar
  69. Wang L, Chen L (2017b) Interannual variation of the Asian-Pacific oscillation. Dyn Atmos Oceans 77:17–25. doi: 10.1016/j.dynatmoce.2016.10.009 CrossRefGoogle Scholar
  70. Wang L, Li T, Zhou T (2012) Intraseasonal SST variability and air-sea interaction over the Kuroshio extension region during Boreal summer*. J Clim 25:1619–1634CrossRefGoogle Scholar
  71. Wang L, Li T, Zhou T (2015) Effect of high-frequency wind on intraseasonal SST variabilities over the mid-latitude North Pacific region during boreal summer. Clim Dyn 45:2607–2617. doi: 10.1007/s00382-015-2496-2 CrossRefGoogle Scholar
  72. Ward PJ, Jongman B, Kummu M, Dettinger MD, Weiland FCS, Winsemius HC (2014) Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc Natl Acad Sci USA 111:15659–15664CrossRefGoogle Scholar
  73. Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern oscillation. Geophys Res Lett 24:779–782CrossRefGoogle Scholar
  74. Wyrtki K (1975) El Niño-the dynamic response of the equatorial Pacific ocean to atmospheric forcing. J Phys Oceanogr 5:572–584CrossRefGoogle Scholar
  75. Xie SP, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46:340–350CrossRefGoogle Scholar
  76. Yan L, Yong-Qiang Y, Bin W, Li-Juan L, Pan-Xing W (2009) ENSO hindcast experiments using a coupled GCM. Atmos Oceanic Sci Lett 2:7–13CrossRefGoogle Scholar
  77. Yan L, Wang P, Yu Y, Li L, Wang B (2010) Potential predictability of sea surface temperature in a coupled ocean-atmosphere GCM. Adv Atmos Sci 27:921–936CrossRefGoogle Scholar
  78. Yu J-Y, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720CrossRefGoogle Scholar
  79. Yu Y-Q, Chen L, Zhang Y (2014) ENSO and PDO in two versions of FGOALS. In: Zhou T, Yu Y, Liu Y, Wang B (eds) Flexible global ocean–atmosphere–land system model. Springer earth system sciences. Springer, Berlin, pp 107–113. doi: 10.1007/978-3-642-41801-3_14 Google Scholar
  80. Zhang L, Chang P, Ji L (2009) Linking the Pacific meridional mode to ENSO: coupled model analysis. J Clim 22:3488–3505CrossRefGoogle Scholar
  81. Zhang H, Clement A, Di Nezio P (2014a) The South Pacific meridional mode: a mechanism for ENSO-like variability. J Clim 27:769–783CrossRefGoogle Scholar
  82. Zhang H, Deser C, Clement A, Tomas R (2014b) Equatorial signatures of the Pacific Meridional modes: dependence on mean climate state. Geophys Res Lett 41:568–574. doi: 10.1002/2013GL058842 CrossRefGoogle Scholar
  83. Zhu J, Shukla J (2013) The role of air–sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J Clim 26:5689–5697CrossRefGoogle Scholar
  84. Zhu J et al (2014) Salinity anomaly as a trigger for ENSO events. Sci Rep 4:6821. doi: 10.1038/srep06821 CrossRefGoogle Scholar
  85. Zhu J, Kumar A, Huang B, Balmaseda MA, Hu Z-Z, Marx L, Kinter III JL (2016) The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci Rep 6:19677 doi: 10.1038/srep19677 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yi-Kai Wu
    • 1
    • 2
  • Lin Chen
    • 3
    • 4
  • Chi-Cherng Hong
    • 2
  • Tim Li
    • 3
    • 4
  • Cheng-Ta Chen
    • 1
  • Lu Wang
    • 3
    • 4
  1. 1.Department of Earth SciencesNational Taiwan Normal UniversityTaipeiTaiwan
  2. 2.Department of Earth and Life SciencesUniversity of TaipeiTaipeiTaiwan
  3. 3.International Pacific Research Center (IPRC), and Department of Atmospheric Sciences, SOESTUniversity of Hawaii at ManoaHonoluluUSA
  4. 4.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations