Climate Dynamics

, Volume 51, Issue 11–12, pp 3985–3998 | Cite as

Intraseasonal responses of the East Asia summer rainfall to anthropogenic aerosol climate forcing

  • Guoxing Chen
  • Jing Yang
  • Qing Bao
  • Wei-Chyung WangEmail author


The WRF Model is used to investigate intraseasonal responses of the summer rainfall to aerosol direct and cloud-adjustment effects over East Asia, where the anthropogenic aerosol loading has been increasing in the past few decades. The responses are evaluated by comparing two cases for each year during 2002–2008: a control case imposing the observed aerosol optical depth of the corresponding year and a sensitivity case having anthropogenic components of the control case reduced by 75%. Analyses of multiple-year simulations reveal that aerosol-induced changes of rainfall and circulation exhibit strong intraseasonal variability, and that the spatial pattern of changes in the monthly rainfall is related to the intensification and westward extension of the western North-Pacific subtropical high (WNPSH) by increased aerosols. This perturbation of the WNPSH induces surface air divergence over the southeast China and convergence over regions to the north and west of the WNPSH, causing, respectively, decreased and increased rainfall. As the WNPSH migration path varies year by year, however, the variability of rainfall changes over subregions of the eastern China (e.g., North China) is large within the decade. Meanwhile, the pattern of summer-gross rainfall changes also shows large interannual variation, but the general pattern of wetter in the west and dryer in the east persists. Results also suggest that the aerosol increase tends to reduce the number of Tibet Plateau vortices, which indirectly influence summer rainfall over the eastern China.


Intraseasonal Aerosol climate forcing East Asia summer monsoon Western North-Pacific subtropical high 



The authors thank the two anonymous reviewers for valuable suggestions and comments, which greatly help clarify this study. This study is supported by a grant from the Office of Sciences (BER), U.S. DOE. JY acknowledges the supports by funds from National Natural Science Foundation of China (Grant 41375003 and Grant 41621061), and WCW acknowledges the supports of Chinese 973 program (Grant 2013CB955803) to visit Beijing University and the Institute of Atmospheric Physics.


  1. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230. doi: 10.1126/science.245.4923.1227 CrossRefGoogle Scholar
  2. Bordoni S, Schneider T (2008) Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat Geosci 1:515–519. doi: 10.1038/ngeo248.CrossRefGoogle Scholar
  3. Chang C-P, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J Climate 13:4310–4325. doi: 10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2 CrossRefGoogle Scholar
  4. Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585. doi: 10.1175/1520-0493(2001)129<0569:caalsh>;2 CrossRefGoogle Scholar
  5. Chen J-P, Liu S-T (2004) Physically based two-moment bulkwater parametrization for warm-cloud microphysics. Q J Roy Meteor Soc 130:51–78. doi: 10.1256/Qj.03.41 CrossRefGoogle Scholar
  6. Chen G, Wang W-C (2016) Aerosol–stratocumulus–radiation interactions over the southeast Pacific: implications to the underlying air–sea coupling. J Atmos Sci 73:2759–2771. doi: 10.1175/JAS-D-15-0277.1 CrossRefGoogle Scholar
  7. Chen G, Wang W-C, Chen J-P (2015) Aerosol–stratocumulus–radiation interactions over the southeast Pacific. J Atmos Sci 72:2612–2621. doi: 10.1175/jas-d-14-0319.1 CrossRefGoogle Scholar
  8. Cheng C-T, Wang W-C, Chen J-P (2007) A modelling study of aerosol impacts on cloud microphysics and radiative properties. Q J Roy Meteor Soc 133:283–297. doi: 10.1002/Qj.25 CrossRefGoogle Scholar
  9. Cheng C-T, Wang W-C, Chen J-P (2010) Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmos Res 96:461–476. doi: 10.1016/j.atmosres.2010.02.005 CrossRefGoogle Scholar
  10. Dao S-Y, Chen L-S (1957) The structure of general circulation over continent of Asia in summer. J Meteorol Soc Japan Ser II(35A):215–229Google Scholar
  11. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  12. Fan J et al (2012) Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J Geophys Res Atmos 117:D00K36. doi: 10.1029/2011jd016537 CrossRefGoogle Scholar
  13. Fan J, Wang Y, Rosenfeld D, Liu X (2016) Review of aerosol–cloud interactions: mechanisms, significance, and challenges. J Atmos Sci 73:4221–4252. doi: 10.1175/jas-d-16-0037.1 CrossRefGoogle Scholar
  14. Feng Y, Zhao X (2015) Changes in spatiotemporal pattern of precipitation over China during 1980–2012. Environ Earth Sci 73:1649–1662. doi: 10.1007/s12665-014-3517-x.CrossRefGoogle Scholar
  15. Guo L, Highwood EJ, Shaffrey LC, Turner AG (2013) The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon. Atmos Chem Phys 13:1521–1534. doi: 10.5194/acp-13-1521-2013 CrossRefGoogle Scholar
  16. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. doi: 10.1175/mwr3199.1 CrossRefGoogle Scholar
  17. Hong C-C, Lee M-Y, Hsu H-H, Kuo J-L (2010) Role of submonthly disturbance and 40–50 day ISO on the extreme rainfall event associated with Typhoon Morakot (2009) in Southern Taiwan. Geophys Res Lett 37:L08805. doi: 10.1029/2010gl042761 CrossRefGoogle Scholar
  18. Huffman GJ et al (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50. doi: 10.1175/1525-7541(2001)002<0036:gpaodd>;2 CrossRefGoogle Scholar
  19. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J Geophys Res Atmos. doi: 10.1029/2008JD009944.CrossRefGoogle Scholar
  20. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. doi: 10.1175/1520-0450(2004)043<0170:tkcpau>;2 CrossRefGoogle Scholar
  21. Lamarque JF et al (2012) CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci Model Dev 5:369–411. doi: 10.5194/gmd-5-369-2012 CrossRefGoogle Scholar
  22. Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi: 10.1029/2006gl027546 CrossRefGoogle Scholar
  23. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dynam 26:855–864. doi: 10.1007/s00382-006-0114-z CrossRefGoogle Scholar
  24. Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011a) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4:888–894. doi: 10.1038/Ngeo1313.CrossRefGoogle Scholar
  25. Li Z et al (2011b) East Asian studies of tropospheric aerosols and their impact on regional climate (EAST-AIRC): an overview. Journal of Geophysical Research: Atmospheres 116:D00K34. doi: 10.1029/2010jd015257 CrossRefGoogle Scholar
  26. Li S et al (2016a) Impact of aerosols on regional climate in southern and northern China during strong/weak East Asian summer monsoon years. J Geophys Res Atmos. doi: 10.1002/2015jd023892 CrossRefGoogle Scholar
  27. Li Z et al (2016b) Aerosol and monsoon climate interactions over Asia. Rev Geophys. doi: 10.1002/2015rg000500.CrossRefGoogle Scholar
  28. Lin Z (2015) Analysis of Tibetan Plateau vortex activities using ERA-Interim data for the period 1979–2013. J Meteorol Res 29:720–734. doi: 10.1007/s13351-015-4273-x CrossRefGoogle Scholar
  29. Liu H, Yang J, Zhang D-L, Wang B (2014) Roles of synoptic to quasi-biweekly disturbances in generating the summer 2003 heavy rainfall in East China. Mon Weather Rev 142:886–904. doi: 10.1175/MWR-D-13-00055.1 CrossRefGoogle Scholar
  30. Manoj MG, Devara PCS, Safai PD, Goswami BN (2011) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dynam 37:2181–2198. doi: 10.1007/s00382-010-0971-3 CrossRefGoogle Scholar
  31. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Slovak Acad Sci 24:163–187Google Scholar
  32. Park H-S, Lintner BR, Boos WR, Seo K-H (2015) The effect of midlatitude transient eddies on monsoonal southerlies over Eastern China. J Climate 28:8450–8465. doi: 10.1175/jcli-d-15-0133.1 CrossRefGoogle Scholar
  33. Qian W, Lee DK (2000) Seasonal march of Asian summer monsoon. Int J Climatol 20:1371–1386. doi: 10.1002/1097-0088(200009)20:11<1371::AID-JOC538>3.0.CO;2-V CrossRefGoogle Scholar
  34. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Atmosphere—Aerosols, climate, and the hydrological cycle. Science 294:2119–2124. doi: 10.1126/science.1064034 CrossRefGoogle Scholar
  35. Ren X, Yang X, Sun X (2013) Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J Climate 26:8929–8946. doi: 10.1175/JCLI-D-12-00861.1 CrossRefGoogle Scholar
  36. Rosenfeld D et al (2008) Flood or drought: How do aerosols affect precipitation? Science 321:1309–1313. doi: 10.1126/science.1160606 CrossRefGoogle Scholar
  37. Roundy PE (2012) Tropical–extratropical interactions. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system. second edn. Springer, Berlin, pp 497–512. doi:10.1007/978-3-642-13914-7_14Google Scholar
  38. Schneider T, Bordoni S (2008) Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J Atmos Sci 65:915–934. doi: 10.1175/2007jas2415.1 CrossRefGoogle Scholar
  39. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613. doi: 10.1038/nature08281 CrossRefGoogle Scholar
  40. Tao S-y, Ding Y-h (1981) Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the Occurrence of heavy rain and severe convective storms in China. Bull Amer Meteorol Soc 62:23–30. doi: 10.1175/1520-0477(1981)062<0023:oeotio>;2 CrossRefGoogle Scholar
  41. Thiébaux J, Rogers E, Wang W, Katz B (2003) A new high-resolution blended real-time global sea surface temperature analysis. Bull Amer Meteorol Soc 84:645–656. doi: 10.1175/BAMS-84-5-645 CrossRefGoogle Scholar
  42. Thompson G, Tewari M, Ikeda K, Tessendorf S, Weeks C, Otkin J, Kong F (2016) Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts. Atmos Res 168:92–104. doi: 10.1016/j.atmosres.2015.09.005 CrossRefGoogle Scholar
  43. Twomey S (1974) Pollution and planetary albedo. Atmos Environ 8:1251–1256. doi: 10.1016/0004-6981(74)90004-3 CrossRefGoogle Scholar
  44. Wang M, Duan A (2015) Quasi-biweekly oscillation over the Tibetan Plateau and its link with the Asian summer monsoon. J Climate 28:4921–4940. doi: 10.1175/jcli-d-14-00658.1 CrossRefGoogle Scholar
  45. Wang B, Xiang B, Lee J-Y (2013a) Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proc Natl Acad Sci 110:2718–2722. doi: 10.1073/pnas.1214626110 CrossRefGoogle Scholar
  46. Wang Y, Khalizov A, Levy M, Zhang RY (2013b) New directions: Light absorbing aerosols and their atmospheric impacts. Atmos Environ 81:713–715. doi: 10.1016/j.atmosenv.2013.09.034 CrossRefGoogle Scholar
  47. Wang Y et al (2014) Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model. Proc Natl Acad Sci 111:6894–6899. doi: 10.1073/pnas.1403364111 CrossRefGoogle Scholar
  48. Wang Y, Jiang J, Su H (2015) Atmospheric responses to the redistribution of anthropogenic aerosols. J Geophys Res Atmos. doi: 10.1002/2015jd023665 CrossRefGoogle Scholar
  49. Yang J, Wang B, Bao Q (2010) Biweekly and 21-30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River Basin. J Climate 23:1146–1159. doi: 10.1175/2009JCLI3005.1 CrossRefGoogle Scholar
  50. Yang X, Ferrat M, Li Z (2013a) New evidence of orographic precipitation suppression by aerosols in central China. Meteorol Atmos Phys 119:17–29. doi: 10.1007/s00703-012-0221-9 CrossRefGoogle Scholar
  51. Yang X, Yao Z, Li Z, Fan T (2013b) Heavy air pollution suppresses summer thunderstorms in central China. J Atmos Sol-Terr Phy 95–96:28–40. doi: 10.1016/j.jastp.2012.12.023 CrossRefGoogle Scholar
  52. Yang J, Bao Q, Wang B, Gong D, He H, Gao M (2014) Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers. Clim Dynam 42:1469–1486. doi: 10.1007/s00382-013-1728-6 CrossRefGoogle Scholar
  53. Yang J, Bao Q, Wang B, He H, Gao M, Gong D (2016) Characterizing two types of transient intraseasonal oscillations in the Eastern Tibetan Plateau summer rainfall. Clim Dynam. doi: 10.1007/s00382-016-3170-z CrossRefGoogle Scholar
  54. Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Climate 18:1096–1108. doi: 10.1175/JCLI-3318.1 CrossRefGoogle Scholar
  55. Zhang P, Li G, Fu X, Liu Y, Li L (2014) Clustering of Tibetan Plateau vortices by 10–30-Day intraseasonal oscillation. Mon Weather Rev 142:290–300. doi: 10.1175/mwr-d-13-00137.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Guoxing Chen
    • 1
  • Jing Yang
    • 2
  • Qing Bao
    • 3
  • Wei-Chyung Wang
    • 1
    Email author
  1. 1.Atmospheric Sciences Research Center, University at AlbanyState University of New YorkAlbanyUSA
  2. 2.State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations