Climate Dynamics

, Volume 50, Issue 7–8, pp 2443–2455 | Cite as

Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau

Article

Abstract

Sub-grid-scale orographic variation (smaller than 5 km) exerts turbulent form drag on atmospheric flows and significantly retards the wind speed. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the drag to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag from the surface layer to upper layers. To investigate the effect of the new scheme, WRF with the old scheme and with the new one was used to simulate the climate over the complex terrain of the Tibetan Plateau from May to October 2010. The two schemes were evaluated in terms of the direct impact (on wind fields) and the indirect impact (on air temperature and precipitation). The new TOFD scheme alleviates the mean bias in the surface wind components, and clearly reduces the root mean square error (RMSEs) in seasonal mean wind speed (from 1.10 to 0.76 m s−1), when referring to the station observations. Furthermore, the new TOFD scheme also generally improves the simulation of wind profile, as characterized by smaller biases and RMSEs than the old one when referring to radio sounding data. Meanwhile, the simulated precipitation with the new scheme is improved, with reduced mean bias (from 1.34 to 1.12 mm day−1) and RMSEs, which is due to the weakening of water vapor flux at low-level atmosphere with the new scheme when crossing the Himalayan Mountains. However, the simulation of 2-m air temperature is little improved.

Keywords

Turbulent orographic form drag Tibetan Plateau Complex terrain WRF 

Notes

Acknowledgements

The authors are grateful to Dr Anton Beljaars for offering the filtered orography SD and the great help during code processing. This work was funded by the National Natural Science Foundation of China (Grant Nos. 91537210, 41325019), by the International Partnership Program of Chinese Academy of Sciences (Grant No. 131C11KYSB20160061) and by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB03030300). The authors are grateful to the two anonymous reviewers whose comments helped a lot to improve the manuscript.

References

  1. Beljaars ACM, Brown AR, Wood N (2004) A new parametrization of turbulent orographic form drag. Q J Roy Meteor Soc 130:1327–1347. doi: 10.1256/qj.03.73
  2. Boer GJ, Mcfarlane NA, Laprise R et al (1984) The Canadian Climate Centre spectral atmospheric general circulation model. Atmos Ocean 22:397–429. doi: 10.1080/07055900.1984.9649208
  3. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev 129:569–585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  4. Choi H, Hong S (2015) An updated subgrid orographic parameterization for global atmospheric forecast models. J Geophys Res 120. doi: 10.1002/2015JD024230
  5. Feng L, Zhou T (2012) Water vapor transport for summer precipitation over the Tibetan Plateau: multi-dataset analysis. J Geophys Res 117:D20114. doi: 10.1029/2011JD017012 CrossRefGoogle Scholar
  6. Flato G, Marotzke J, Abiodun B et al (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Clim Change 5:741–866Google Scholar
  7. Gao Y, Xue Y, Peng W et al (2011) Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Adv Atmos Sci 28:1077–1098. doi: 10.1007/s00376-010-0039-7
  8. Gao Y, Xu J, Chen D (2015) Evaluation of WRF mesoscale climate simulations over the Tibetan plateau during 1979–2011. J Clim 28:2823–2840. doi: 10.1175/JCLI-D-14-00300.1 CrossRefGoogle Scholar
  9. Grant ALM, Mason PJ (1990) Observations of boundary-layer structure over complex terrain. Q J Roy Meteor Soc 116 (491):159–186CrossRefGoogle Scholar
  10. Gregory D, Shutts GJ, Mitchell JR (1998) A new gravity-wave-drag scheme incorporating anisotropic orography and low-lev el wave breaking: impact upon the climate of the UK Meteorological Office Unified Model. Q J Roy Meteor Soc 124:463–493. doi: 10.1002/qj.49712454606
  11. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787. doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
  12. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341CrossRefGoogle Scholar
  13. Hong SY, Choi J, Chang EC et al (2008) Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Weather Forecast 23:523–531. doi: 10.1175/2007WAF2007030.1
  14. Ji Z, Kang S (2013) Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios. J Atmos Sci 70:1278–1290. doi: 10.1175/JAS-D-12-0155.1 CrossRefGoogle Scholar
  15. Jimenez PA, Dudhia J (2012) Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteorol 51:300–316CrossRefGoogle Scholar
  16. Kain, JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47(23):2784–2802. doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2 CrossRefGoogle Scholar
  17. Kanamitsu M (1989) Description of the NMC global data assimilation and forecast system. Weather Forecast 4:335–342. doi: 10.1175/JAMC-D-11-084.1
  18. Kim YJ (1996) Representation of subgrid-scale orographic effects in a general circulation model: part I: Impacts on the dynamics of a simulated January climate. J Clim 9:2698–2717. doi: 10.1175/1520-0442(1996)009<2698:ROSSOE>2.0.CO;2 CrossRefGoogle Scholar
  19. Kim YJ, Arakawa A (1995) Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J Atmos Sci 52:1875–1902. doi: 10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2 CrossRefGoogle Scholar
  20. Kim YJ, Doyle JD (2005) Extension of an orographic-drag parameterization scheme to incorporate orographic anisotropy and flow blocking. Q J Roy Meteor Soc 131:1893–1921. doi: 10.1256/qj.04.160
  21. Lin YL, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1092. doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 CrossRefGoogle Scholar
  22. Lorente-Plazas R, Jiménez RP, Dudhia J et al (2016) Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF model. Mon Wea Rev. doi: 10.1175/MWR-D-15-0449.1
  23. Lotto F, Miller MJ (1997) A new subgrid-scale orographic drag parameterization: its formulation and testing. Q J Roy Meteor Soc 123:101–127. doi: 10.1002/qj.49712353704
  24. Ma J, Wang H, Fan K (2015) Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4. Adv Atmos Sci 32(5):577–584. doi: 10.1007/s00376-014-4143-y
  25. Macfarlane NA (1987) The effect of orographically excited gravity wave drag on the general circulation of the low stratosphere and troposphere. J Atmos Sci 44:1775–1800. doi: 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 CrossRefGoogle Scholar
  26. Mass C, Ovens D (2011) Fixing WRF’s high speed wind bias: a new subgrid scale drag parameterization and the role of detailed verification. In: 24th Conference on Weather and Forecasting and 20th Conference on Numerical Weather Prediction, Preprints, 91st American Meteorological Society Annual Meeting (vol 23727). http://ams.confex.com/ams/91Annual/webprogram/Paper180011.html
  27. Mlawer EJ, Taubman SJ, Brown PD et al (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682. doi: 10.1029/97JD00237 CrossRefGoogle Scholar
  28. Mueller B, Seneviratne SI (2014) Systermatic land climate and evapotranspiration biases in CMIP5 simulations. Geophys Res Lett 41:128–134. doi: 10.1002/2013GL058055 CrossRefGoogle Scholar
  29. Orr A (2007) Evaluation of revised parameterizations of sub-grid orographic drag. ECMWF Technical MemorandumGoogle Scholar
  30. Rontu L (2006) A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus 58A:69–81. doi: 10.1111/j.1600-0870.2006.00162.x
  31. Scinocca JF, Macfarlane NA (2000) The parameterization of drag induced by stratified flow over anisotropic topography. Q J Roy Meteor Soc 126:2353–2393. doi: 10.1002/qj.49712656802
  32. Shimada S, Ohsawa T, Chikaoka S et al (2011) Accuracy of the wind speed profile in the lower PBL as simulated by the WRF model. Sola 7:109–112. doi: 10.2151/sola.2011-028 CrossRefGoogle Scholar
  33. Su F, Duan X, Chen D et al (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26:3187–3208. doi: 10.1175/JCLI-D-12-00321.1 CrossRefGoogle Scholar
  34. Tewari M, Chen F, Wang W et al (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp 11–15Google Scholar
  35. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 CrossRefGoogle Scholar
  36. Wang A, Zeng X (2012) Evaluation of multi-reanalysis products with in-situ observations over the Tibetan Plateau. J Geophys Res 117:D05102. doi: 10.1029/2011JD016553 Google Scholar
  37. Webster S, Brown AR, Cameron DR et al (2003) Improvements to the representation of orography in the Met Office Unified Model. Q J Roy Meteor Soc 129:1989–2010. doi: 10.1256/qj.02.133
  38. Wood N, Mason P (1993) The pressure force induced by neutral, turbulent flow over hills. Q J Roy Meteor Soc 119(514):1233–1267. doi: 10.1002/qj.49711951402
  39. Wood N, Brown AR, Hewer FE (2001) Parametrizing the effects of orography on the boundary layer: an alternative to effective roughness lengths. Q J Roy Meteor Soc 127:759–777. doi: 10.1002/qj.49712757303
  40. Wooding RA, Bradley EF, Marshall JK (1973) Drag due to regular arrays of roughness elements of varying geometry. Bound-Lay Meteorol 5(3):285–308. doi: 10.1007/BF00155238
  41. Wu G, Chen S (1985) The effect of mechanical forcing on the formation of a mesoscale vortex. Q J Roy Meteor Soc 111(470):1049–1070. doi: 10.1002/qj.49711147009

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  2. 2.Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijingChina
  3. 3.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations