Climate Dynamics

, Volume 50, Issue 3–4, pp 1177–1192 | Cite as

Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century

  • Kimmo RuosteenojaEmail author
  • Tiina Markkanen
  • Ari Venäläinen
  • Petri Räisänen
  • Heli Peltola


Projections for near-surface soil moisture content in Europe for the 21st century were derived from simulations performed with 26 CMIP5 global climate models (GCMs). Two Representative Concentration Pathways, RCP4.5 and RCP8.5, were considered. Unlike in previous research in general, projections were calculated separately for all four calendar seasons. To make the moisture contents simulated by the various GCMs commensurate, the moisture data were normalized by the corresponding local maxima found in the output of each individual GCM. A majority of the GCMs proved to perform satisfactorily in simulating the geographical distribution of recent soil moisture in the warm season, the spatial correlation with an satellite-derived estimate varying between 0.4 and 0.8. In southern Europe, long-term mean soil moisture is projected to decline substantially in all seasons. In summer and autumn, pronounced soil drying also afflicts western and central Europe. In northern Europe, drying mainly occurs in spring, in correspondence with an earlier melt of snow and soil frost. The spatial pattern of drying is qualitatively similar for both RCP scenarios, but weaker in magnitude under RCP4.5. In general, those GCMs that simulate the largest decreases in precipitation and increases in temperature and solar radiation tend to produce the most severe soil drying. Concurrently with the reduction of time-mean soil moisture, episodes with an anomalously low soil moisture, occurring once in 10 years in the recent past simulations, become far more common. In southern Europe by the late 21st century under RCP8.5, such events would be experienced about every second year.


Near-surface soil moisture CMIP5 GCMs Representative concentration pathways (RCPs) Climate change Model validation 



This work has been funded by the Academy of Finland (the ADAPT and PLUMES projects, decisions 260785 and 278067, the FORBIO project of the Strategic Research Council and the Centre of Excellence, decision 272041), the Finnish Ministry of Agriculture and Forestry (the ILMAPUSKURI project) and the European Commission (the Life+ project MONIMET, Grant agreement LIFE12 ENV/FI000409). The CMIP5 GCM data were downloaded from the Earth System Grid Federation data archive ( and the remotely-sensed soil moisture data from the Climate Change Initiative Phase 1 Soil Moisture Project of the European Space Agency ( The two unknown reviewers are thanked for constructive comments.

Supplementary material

382_2017_3671_MOESM1_ESM.pdf (9.5 mb)
Supplementary material 1 (PDF 9777 KB)


  1. Allen C, Macalady A, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg E, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  2. Boehlert B, Solomon S, Strzepek KM (2015) Water under a changing and uncertain climate: lessons from climate model ensembles. J Clim 28:9561–9582. doi: 10.1175/JCLI-D-14-00793.1 CrossRefGoogle Scholar
  3. Briceño-Elizondo E, Garcia-Gonzalo J, Peltola H, Matala J, Kellomäki S (2006) Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. For Ecol Manag 232:152–167. doi: 10.1016/j.foreco.2006.05.062 CrossRefGoogle Scholar
  4. Cheng S, Guan X, Huang J, Ji F, Guo R (2015) Long-term trend and variability of soil moisture over East Asia. J Geophys Res Atmos 120:8658–8670. doi: 10.1002/2015JD023206 CrossRefGoogle Scholar
  5. Dai A (2011) Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res Atmos 116(D12):115. doi: 10.1029/2010JD015541 CrossRefGoogle Scholar
  6. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. doi: 10.1038/NCLIMATE1633 CrossRefGoogle Scholar
  7. Dirmeyer PA, Jin Y, Singh B, Yan X (2013) Evolving land–atmosphere interactions over North America from CMIP5 simulations. J Clim 26:7313–7327. doi: 10.1175/JCLI-D-12-00454.1 CrossRefGoogle Scholar
  8. Dong W, Liu Z, Liao H, Tang Q, Li X (2015) New climate and socio-economic scenarios for assessing global human health challenges due to heat risk. Clim Change 130:505–518. doi: 10.1007/s10584-015-1372-8 CrossRefGoogle Scholar
  9. Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13:10081–10094. doi: 10.5194/acp-13-10081-2013 CrossRefGoogle Scholar
  10. Gao Y, Markkanen T, Thum T, Aurela M, Lohila A, Mammarella I, Kämäräinen M, Hagemann S, Aalto T (2016) Assessing various drought indicators in representing summer drought in boreal forests in Finland. Hydrol Earth Syst Sci 20:175–191. doi: 10.5194/hess-20-175-2016 CrossRefGoogle Scholar
  11. Hauck C, Barthlott C, Krauss L, Kalthoff N (2011) Soil moisture variability and its influence on convective precipitation over complex terrain. Quart J R Meteorol Soc 137:42–56. doi: 10.1002/qj.766 CrossRefGoogle Scholar
  12. Huang J, Ji M, Xie Y, Wang S, He Y, Ran J (2016) Global semi-arid climate change over last 60 years. Clim Dyn 46:1131–1150. doi: 10.1007/s00382-015-2636-8 CrossRefGoogle Scholar
  13. Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Change 6:166–172. doi: 10.1038/nclimate2837 CrossRefGoogle Scholar
  14. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker, TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 1535Google Scholar
  15. Jylhä K, Tuomenvirta H, Ruosteenoja K, Niemi-Hugaerts H, Keisu K, Karhu JA (2010) Observed and projected future shifts of climate zones in Europe and their use to visualize climate change information. Wea Clim Soc 2:148–167CrossRefGoogle Scholar
  16. Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos Trans R Soc B Biol Sci 363:2341–2351. doi: 10.1098/rstb.2007.2204 CrossRefGoogle Scholar
  17. Kurjak D, Střelcová K, Ditmarová L, Priwitzer T, Kmet’ J, Homolák M, Pichler V (2012) Physiological response of irrigated and non-irrigated Norway spruce trees as a consequence of drought in field conditions. Eur J For Res 131:1737–1746. doi: 10.1007/s10342-012-0611-z CrossRefGoogle Scholar
  18. Lehtonen I, Venäläinen A, Kämäräinen M, Peltola H, Gregow H (2016) Risk of large-scale fires in boreal forests of Finland under changing climate. Nat Hazards Earth Syst Sci 16:239–253. doi: 10.5194/nhess-16-239-2016 CrossRefGoogle Scholar
  19. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. doi: 10.1016/j.foreco.2009.09.023 CrossRefGoogle Scholar
  20. Lindner M, Fitzgerald JB, Zimmermann N, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83. doi: 10.1016/j.jenvman.2014.07.030 CrossRefGoogle Scholar
  21. Liu Y, Dorigo W, Parinussa R, de Jeu R, Wagner W, McCabe M, Evans J, van Dijk A (2012) Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens Environ 123:280–297. doi: 10.1016/j.rse.2012.03.014 CrossRefGoogle Scholar
  22. Liu YY, Parinussa RM, Dorigo WA, De Jeu RAM, Wagner W, van Dijk AIJM, McCabe MF, Evans JP (2011) Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol Earth Syst Sci 15:425–436. doi: 10.5194/hess-15-425-2011 CrossRefGoogle Scholar
  23. Luomaranta A, Ruosteenoja K, Jylhä K, Gregow H, Haapala J, Laaksonen A (2014) Multimodel estimates of the changes in the Baltic Sea ice cover during the present century. Tellus A 66(22):617. doi: 10.3402/tellusa.v66.22617 Google Scholar
  24. Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95CrossRefGoogle Scholar
  25. Mueller B, Zhang X (2016) Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data. Clim Change 134:255–267. doi: 10.1007/s10584-015-1499-7 CrossRefGoogle Scholar
  26. Muukkonen P, Nevalainen S, Lindgren M, Peltoniemi M (2015) Spatial occurrence of drought-associated damages in Finnish boreal forests: results from forest condition monitoring and GIS analysis. Boreal Environ Res 20:172–180Google Scholar
  27. Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17:1765–1781. doi: 10.5194/hess-17-1765-2013 CrossRefGoogle Scholar
  28. Pei L, Moore N, Zhong S, Kendall AD, Gao Z, Hyndman DW (2016) Effects of irrigation on summer precipitation over the United States. J Clim 29:3541–3558. doi: 10.1175/JCLI-D-15-0337.1 CrossRefGoogle Scholar
  29. Pennell C, Reichler T (2011) On the effective number of climate models. J Clim 24:2358–2367. doi: 10.1175/2010JCLI3814.1 CrossRefGoogle Scholar
  30. Potopová V, Boroneanţ C, Možný M, Soukup J (2015) Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic. Int J Climatol 36:3741–3758. doi: 10.1002/joc.4588 CrossRefGoogle Scholar
  31. Pritchard OG, Hallett SH, Farewell TS (2015) Probabilistic soil moisture projections to assess Great Britain’s future clay-related subsidence hazard. Clim Change 133:635–650. doi: 10.1007/s10584-015-1486-z CrossRefGoogle Scholar
  32. Räisänen J, Eklund J (2012) 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dyn 38:2575–2591. doi: 10.1007/s00382-011-1076-3 CrossRefGoogle Scholar
  33. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Giorgetta MEM, Hagemann S, Kirchner I, Manzini LKE, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Tech Rep 349, Max-Planck-Institut für Meteorologie, HamburgGoogle Scholar
  34. Roudier P, Andersson JCM, Donnelly C, Feyen L, Greuell W, Ludwig F (2016) Projections of future floods and hydrological droughts in Europe under a +2\(^\circ\)C global warming. Clim Change 135:341–355. doi: 10.1007/s10584-015-1570-4 CrossRefGoogle Scholar
  35. Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over Europe. Clim Dyn 27:281–299. doi: 10.1007/s00382-006-0125-9 CrossRefGoogle Scholar
  36. Ruosteenoja K, Räisänen P (2013) Seasonal changes in solar radiation and relative humidity in Europe in response to global warming. J Clim 26:2467–2481. doi: 10.1175/JCLI-D-12-00007.1 CrossRefGoogle Scholar
  37. Ruosteenoja K, Räisänen J, Venäläinen A, Kämäräinen M (2016) Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int J Climatol 36:3039–3055. doi: 10.1002/joc.4535 CrossRefGoogle Scholar
  38. Scheff J, Frierson DMW (2015) Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J Clim 28:5583–5600. doi: 10.1175/JCLI-D-14-00480.1 CrossRefGoogle Scholar
  39. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111:3245–3250. doi: 10.1073/pnas.1222460110 CrossRefGoogle Scholar
  40. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. doi: 10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  41. Seneviratne SI, Wilhelm M, Stanelle T, van den Hurk B, Hagemann S, Berg A, Cheruy F, Higgins ME, Meier A, Brovkin V, Claussen M, Ducharne A, Dufresne JL, Findell KL, Ghattas J, Lawrence DM, Malyshev S, Rummukainen M, Smith B (2013) Impact of soil moisture-climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys Res Lett 40:5212–5217. doi: 10.1002/grl.50956 CrossRefGoogle Scholar
  42. Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105. doi: 10.1007/s00382-007-0340-z CrossRefGoogle Scholar
  43. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4:17–22. doi: 10.1038/NCLIMATE2067 CrossRefGoogle Scholar
  44. Trnka M, Brázdil R, Možný M, Štěpánek P, Dobrovolný P, Zahradníček P, Balek J, Semerádová D, Dubrovský M, Hlavinka P, Eitzinger J, Wardlow B, Svoboda M, Hayes M, Žalud Z (2015) Soil moisture trends in the Czech Republic between 1961 and 2012. Int J Climatol 35:3733–3747. doi: 10.1002/joc.4242 CrossRefGoogle Scholar
  45. Vajda A, Venäläinen A, Suomi I, Junila P, Mäkelä HM (2014) Assessment of forest fire danger in a boreal forest environment: description and evaluation of the operational system applied in Finland. Meteorol Appl 21:879–887. doi: 10.1002/met.1425 CrossRefGoogle Scholar
  46. Venäläinen A, Korhonen N, Hyvärinen O, Koutsias N, Xystrakis F, Urbieta IR, Moreno JM (2014) Temporal variations and change in forest fire danger in Europe for 1960–2012. Nat Hazards Earth Syst Sci 14:1477–1490. doi: 10.5194/nhess-14-1477-2014 CrossRefGoogle Scholar
  47. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  48. Zhao T, Dai A (2015) The magnitude and causes of global drought changes in the twenty-first century under a low-moderate emissions scenario. J Clim 28:4490–4512. doi: 10.1175/JCLI-D-14-00363.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Finnish Meteorological InstituteHelsinkiFinland
  2. 2.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations