Climate Dynamics

, Volume 50, Issue 3–4, pp 1145–1159 | Cite as

Role of circulation in European heatwaves using flow analogues

  • Aglaé JézéquelEmail author
  • Pascal Yiou
  • Sabine Radanovics


The intensity of European heatwaves is connected to specific synoptic atmospheric circulation. Given the relatively small number of observations, estimates of the connection between the circulation and temperature require ad hoc statistical methods. This can be achieved through the use of analogue methods, which allow to determine a distribution of temperature conditioned to the circulation. The computation of analogues depends on a few parameters. In this article, we evaluate the influence of the variable representing the circulation, the size of the domain of computation, the length of the dataset, and the number of analogues on the reconstituted temperature anomalies. We tested the sensitivity of the reconstitution of temperature to these parameters for four emblematic recent heatwaves: June 2003, August 2003, July 2006 and July 2015. The paper provides general guidelines for the use of flow analogues to investigate European summer heatwaves. We found that Z500 is better suited than SLP to simulate temperature anomalies, and that rather small domains lead to better reconstitutions. The dataset length has an important influence on the uncertainty. We conclude by a set of recommendations for an optimal use of analogues to probe European heatwaves.


Heatwaves Europe Atmospheric circulation 



NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at Program to compute analogues available online PY and SR are supported by the ERC Grant A2C2 (No. 338965).


  1. Beck C, Philipp A, Jacobeit J (2015) Interannual drought index variations in Central Europe related to the large-scale atmospheric circulation—application and evaluation of statistical downscaling approaches based on circulation type classifications. Theor Appl Climatol 121(3):713–732. doi: 10.1007/s00704-014-1267-z CrossRefGoogle Scholar
  2. Ben Daoud A, Sauquet E, Bontron G, Obled C, Lang M (2016) Daily quantitative precipitation forecasts based on the analogue method: Improvements and application to a French large river basin. Atmos Res 169:147–159. doi: 10.1016/j.atmosres.2015.09.015 CrossRefGoogle Scholar
  3. Beniston M, Diaz HF (2004) The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Glob Planet Change 44(1–4):73–81. doi: 10.1016/j.gloplacha.2004.06.006 CrossRefGoogle Scholar
  4. Cassou C, Cattiaux J (2016) Disruption of the European climate seasonal clock in a warming world. Nat Clim Change 6:589–594. doi: 10.1038/nclimate2969 CrossRefGoogle Scholar
  5. Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18(15):2805–2811. doi: 10.1175/JCLI3506.1 CrossRefGoogle Scholar
  6. Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37(20):1–6. doi: 10.1029/2010GL044613 CrossRefGoogle Scholar
  7. Chardon J, Hingray B, Favre AC, Autin P, Gailhard J, Zin I, Obled C (2014) Spatial similarity and transferability of analog dates for precipitation downscaling over France. J Clim 27(13):5056–5074. doi: 10.1175/JCLI-D-13-00464.1 CrossRefGoogle Scholar
  8. Chardon J, Favre AC, Hingray B (2016) Effects of spatial aggregation on the accuracy of statistically downscaled precipitation predictions. J Hydrometeorol 17(5):1561–1578. doi: 10.1175/JHM-D-15-0031.1 CrossRefGoogle Scholar
  9. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533. doi: 10.1038/nature03972 CrossRefGoogle Scholar
  10. Committee on Extreme Weather Events and Climate Change Attribution (2016) Attribution of extreme weather events in the context of climate change. doi: 10.17226/21852.
  11. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  12. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29(2–3):251–275. doi: 10.1007/s00382-007-0233-1 CrossRefGoogle Scholar
  13. Djalalova I, Delle Monache L, Wilczak J (2015) PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos Environ 108:76–87. doi: 10.1016/j.atmosenv.2015.02.021 CrossRefGoogle Scholar
  14. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan XW, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38(6):1–5. doi: 10.1029/2010GL046582 CrossRefGoogle Scholar
  15. Van den Dool H (1994) Searching for analogues, how long must we wait? Tellus A 46(3):314–324CrossRefGoogle Scholar
  16. Duband D (1981) Prévision spatiale des hauteurs de précipitations journalières (A spatial forecast of daily precipitation heights). La Houille Blanche 7–8:497–512. doi: 10.1051/lhb/1981046 CrossRefGoogle Scholar
  17. Dunne JP, John JG, Shevliakova S, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. doi: 10.1175/JCLI-D-11-00560.1 CrossRefGoogle Scholar
  18. Dunne JP, John JG, Shevliakova S, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2013) GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J Clim 26(7):2247–2267. doi: 10.1175/JCLI-D-12-00150.1 CrossRefGoogle Scholar
  19. Feudale L, Shukla J (2007) Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophys Res Lett 34(3):L03811. doi: 10.1029/2006GL027991 CrossRefGoogle Scholar
  20. Field CB, Intergovernmental Panel on Climate Change (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change. doi: 10.1017/CBO9781139177245
  21. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J Clim 20(20):5081–5099. doi: 10.1175/JCLI4288.1 CrossRefGoogle Scholar
  22. Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health 80(1):16–24. doi: 10.1007/s00420-006-0089-4 CrossRefGoogle Scholar
  23. Gómez-Navarro JJ, Werner J, Wagner S, Luterbacher J, Zorita E (2014) Establishing the skill of climate field reconstruction techniques for precipitation with pseudoproxy experiments. Clim Dyn 45(5–6):1395–1413. doi: 10.1007/s00382-014-2388-x Google Scholar
  24. Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models : a roughness penalty approach, 1st edn. In: Green PJ, Silverman BW. Monographs on statistics and applied probability, vol 58, Chapman & Hall, LondonGoogle Scholar
  25. Hamill TM, Whitaker JS (2006) Probabilistic quantitative precipitation forecasts based on reforecast analogs: theory and application. Mon Weather Rev 134(11):3209–3229. doi: 10.1175/MWR3237.1 CrossRefGoogle Scholar
  26. Hamill TM, Scheuerer M, Bates GT (2015) Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses. Mon Weather Rev 143(8):3300–3309. doi: 10.1175/MWR-D-15-0004.1 CrossRefGoogle Scholar
  27. Horton DE, Johnson NC, Singh D, Swain DL, Rajaratnam B, Diffenbaugh NS (2015) Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522(7557):465–469. doi: 10.1038/nature14550 CrossRefGoogle Scholar
  28. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, arXiv:1011.1669v3
  29. Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26(4):636–646. doi: 10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
  30. Michelangeli PA, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. doi: 10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2
  31. Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F (2011) Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect. doi: 10.1289/ehp.1002430
  32. Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DGH, Peubey C, Thépaut JN, Trémolet Y, Hólm EV, Bonavita M, Isaksen L, Fisher M (2016) ERA-20C: an atmospheric reanalysis of the twentieth century. J Clim 29(11):4083–4097. doi: 10.1175/JCLI-D-15-0556.1 CrossRefGoogle Scholar
  33. Portela A, Castro M (1996) Summer thermal lows in the Iberian peninsula: a three-dimensional simulation. Q J Roy Meteorol Soc 122(1):1–22. doi: 10.1002/qj.49712252902 CrossRefGoogle Scholar
  34. Quesada B, Vautard R, Yiou P, Hirschi M, Seneviratne SI (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Change 2(10):736–741. doi: 10.1038/nclimate1536 CrossRefGoogle Scholar
  35. Radanovics S, Vidal JP, Sauquet E, Ben Daoud A, Bontron G (2013) Optimising predictor domains for spatially coherent precipitation downscaling. Hydrol Earth Sys Sc 17(10):4189–4208. doi: 10.5194/hess-17-4189-2013 CrossRefGoogle Scholar
  36. Rebetez M, Dupont O, Giroud M (2009) An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003. Theor Appl Climatol 95(1–2):1–7. doi: 10.1007/s00704-007-0370-9 CrossRefGoogle Scholar
  37. Russo S, Sillmann J, Fischer EM (2015) Top ten European heatwaves since 1950 and their occurrence in the future. Environ Res Lett 10(12):124003. doi: 10.1088/1748-9326/10/12/124003 CrossRefGoogle Scholar
  38. Schenk F, Zorita E (2012) Reconstruction of high resolution atmospheric fields for Northern Europe using analog-upscaling. Clim Past 8(5):1681–1703. doi: 10.5194/cp-8-1681-2012 CrossRefGoogle Scholar
  39. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443(7108):205–209. doi: 10.1038/nature05095 CrossRefGoogle Scholar
  40. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. doi: 10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  41. Shepherd TG (2015) Climate science: the dynamics of temperature extremes. Nature 522(7557):425–427. doi: 10.1038/522425a CrossRefGoogle Scholar
  42. Shepherd TG (2016) A common framework for approaches to extreme event attribution. Curr Clim Change Rep 2:28–38. doi: 10.1007/s40641-016-0033-y CrossRefGoogle Scholar
  43. Stéfanon M, Drobinski P, D’Andrea F, De Noblet-Ducoudré N (2012) Effects of interactive vegetation phenology on the 2003 summer heat waves. J Geophys Res Atmos 117(24):1–15. doi: 10.1029/2012JD018187 Google Scholar
  44. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309(5731):115–118. doi: 10.1126/science.1109496 CrossRefGoogle Scholar
  45. Tandeo P, Ailliot P, Ruiz J, Hannart A, Chapron B, Easton R, Fablet R (2015) Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system. Mach Learn Data Min Approach Clim Sci 3–12. doi: 10.1007/978-3-319-17220-0_1
  46. Taylor KE, Stouffer RJ, Meehl Ga (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  47. Toth Z (1991) Estimation of atmospheric predictability by circulation analogs. Mon Weather Rev 119(1):65–72CrossRefGoogle Scholar
  48. Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nat Clim Change 5(August):725–730. doi: 10.1038/nclimate2657
  49. Turco M, Quintana Seguí P, Llasat MC, Herrera S, Gutiérrez JM (2011) Testing MOS precipitation downscaling for ENSEMBLES regional climate models over Spain. J Geophys Res 116(D18):109. doi: 10.1029/2011JD016166 CrossRefGoogle Scholar
  50. Vanvyve E, Monache LD, Monaghan AJ, Pinto JO (2015) Wind resource estimates with an analog ensemble approach. Renew Energy 74:761–773. doi: 10.1016/j.renene.2014.08.060 CrossRefGoogle Scholar
  51. Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Weather Rev 118. doi: 10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2
  52. Yiou P (2014) AnaWEGE: a weather generator based on analogues of atmospheric circulation. Geosci Model Dev 7:531–543. doi: 10.5194/gmd-7-531-2014 CrossRefGoogle Scholar
  53. Yiou P, Nogaj M (2004) Extreme climatic events and weather regimes over the North Atlantic: when and where? Geophys Res Lett 31:1–4. doi: 10.1029/2003GL019119 CrossRefGoogle Scholar
  54. Yiou P, Salameh T, Drobinski P, Menut L, Vautard R, Vrac M (2012) Ensemble reconstruction of the atmospheric column from surface pressure using analogues. Clim Dyn 41(5–6):1333–1344. doi: 10.1007/s00382-012-1626-3 Google Scholar
  55. Yiou P, Boichu M, Vautard R, Vrac M, Jourdain S, Garnier E, Fluteau F, Menut L (2014) Ensemble meteorological reconstruction using circulation analogues of 1781–1785. Clim Past 10(2):797–809. doi: 10.5194/cp-10-797-2014 CrossRefGoogle Scholar
  56. Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12(8):2474–2489. doi: 10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.LSCE, CEA Saclay l’Orme des Merisiers, UMR 8212 CEA-CNRS-UVSQ, U Paris-Saclay, IPSLGif-sur-YvetteFrance

Personalised recommendations