Climate Dynamics

, Volume 50, Issue 3–4, pp 1129–1143 | Cite as

Observed modes of sea surface temperature variability in the South Pacific region

  • Ramiro I. SaurralEmail author
  • Francisco J. Doblas-Reyes
  • Javier García-Serrano


The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.


South Pacific Southern Hemisphere warming IPO ENSO CEOF analysis 



The authors would like to thank Scott Power for his comments on an earlier version of the manuscript and the two anonymous reviewers whose suggestions led to a substantial improvement of the paper. This study was supported by Grants UBACyT-20020100100803, UBACyT-20020120300051, PIP-11220120100586 and the SPECS (GA 308378) EU-funded Project. JG-S was partially supported by the H2020-funded MSCA-IF-EF DPETNA project (GA No. 655339). The authors acknowledge the Red Española de Supercomputación (RES) and PRACE for awarding access to MareNostrum 3 at the Barcelona Supercomputing Center through the HiResClim project. The support of Virginie Guémas and Oriol Mula-Valls at the Barcelona Supercomputing Center is warmly appreciated.


  1. Ballester J, Rodríguez-Arias MA, Rodó X (2011) A new extratropical tracer describing the role of the Western Pacific in the onset of El Niño: implications for ENSO understanding and forecasting. J Clim 24:1425–1437CrossRefGoogle Scholar
  2. Barros VR, Silvestri GE (2002) The relation between sea surface temperature at the subtropical south-central Pacific and precipitation in southeastern South America. J Climate 15:251–267CrossRefGoogle Scholar
  3. Clem KR, Fogt RL (2015) South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J Geophys Res 120(7):2773–2792Google Scholar
  4. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, and Coauthors (2011) The twentieth century reanalysis project. Q J R Meteor Soc 137:1–28CrossRefGoogle Scholar
  5. Da Silva GAM, Drumond A, Ambrizzi T (2011) The impact of El Niño on South American summer climate during different phases of the Pacific Decadal Oscillation. Theor Appl Climatol 106:307–319CrossRefGoogle Scholar
  6. Dong B, Dai A (2015) The influence of the Interdecadal Pacific Oscillation on temperature and precipitation over the globe. Clim Dyn 45:2667–2681CrossRefGoogle Scholar
  7. England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Sen Gupta A, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227CrossRefGoogle Scholar
  8. Gershunou A, Barnett TP, Cayan DR (1999) North Pacific interdecadal oscillation seen as factor in ENSO-related North American climate anomalies. Eos 80:25–30CrossRefGoogle Scholar
  9. Grimm AM, Barros VR, Doyle ME (2000) Climate variability in southern South America associated with El Niño and La Niña events. J Clim 13:35–58CrossRefGoogle Scholar
  10. Guan Y, Zhu J, Huang B, Hu ZZ, Kinter JL III (2014) South Pacific ocean dipole: a predictable mode on multiseasonal time scales. J Clim 27:1648–1658CrossRefGoogle Scholar
  11. Horel JD (1984) Complex empirical component analysis: theory and examples. J Clim Appl Meteorol 23:1660–1673CrossRefGoogle Scholar
  12. Huang B, Shukla J (2006) Interannual SST variability in the southern subtropical and extra-tropical ocean. In: Tech Rep 223, Center for Ocean-Land-Atmosphere Studies, Calverton, MD, 20 ppGoogle Scholar
  13. Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperature on the Arctic winter climate. J Geophys Res Atmos 117:D19110CrossRefGoogle Scholar
  14. Jacques-Copper M, Garreaud RD (2015) Characterization of the 1970s climate shift in South America. Int J Climatol 35:2164–2179CrossRefGoogle Scholar
  15. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  16. Karoly DJ, Plumb RA, Ting M (1989) Examples of the horizontal propagation of quasi-stationary waves. J Atmos Sci 46:2802–2811CrossRefGoogle Scholar
  17. Kendall M (1955) Rank correlation methods, 5th edn. Kendall M, J Gibbons J (eds) Oxford University Press, New York, p 260Google Scholar
  18. Kidson JW, Renwick JA (2002) The Southern Hemisphere evolution of ENSO during 1981–1999. J Climate 15:847–863CrossRefGoogle Scholar
  19. Latif M, Barnett TP (1994) Causes of decadal climate variability over the North Pacific and North America. Science 266:634–637CrossRefGoogle Scholar
  20. Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB, Vose RS, Rennie J (2011) An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J Geophys Res D Atmos 116:1–18CrossRefGoogle Scholar
  21. Lienert F, Doblas-Reyes FJ (2013) Decadal prediction of interannual tropical and North Pacific sea surface temperature. J Geophys Res Atmos 118:5913–5922CrossRefGoogle Scholar
  22. Linsley BK, Wellington GM, Schrag DP, Ren L, Salinger MJ, Tudhope AW (2000) Geochemical evidence from corals for changes in the amplitude and spatial pattern of South Pacific interdecadal climate variability over the last 300 years. Clim Dyn 22:1–11Google Scholar
  23. Mann H (1945) Nonparametric tests against trends. Econometrica 13:245–259CrossRefGoogle Scholar
  24. Montecinos A, Pizarro O (2005) Interdecadal SST-SLP coupled variability in the South Pacific. J Geophys Res. doi: 10.1029/2004JC002743 Google Scholar
  25. Morioka Y, Ratnam JV, Sasaki W, Masumoto Y (2013) Generation mechanism of the South Pacific Subtropical Dipole. J Clim 26:6033–6045CrossRefGoogle Scholar
  26. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706CrossRefGoogle Scholar
  27. Peterson RG, White WB (1998) Slow oceanic teleconnections linking the Antarctic Circumpolar Wave with the tropical El Niño-Southern Oscillation. J Geophys Res 103:24573–24583CrossRefGoogle Scholar
  28. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  29. Power S, Haylock M, Colman R, Wang X (2006) The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J Clim 19:4755–4771CrossRefGoogle Scholar
  30. Qiu B, Chen S (2006) Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: observations and causes. J Phys Ocean 36:1751–1762CrossRefGoogle Scholar
  31. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  32. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res D Atmos. doi: 10.1029/2002JD002670.Google Scholar
  33. Renwick JA, Revell MJ (1999) Blocking over the South Pacific and Rossby wave propagation. Mon Weather Rev 127:2233–2247CrossRefGoogle Scholar
  34. Roemmich D, Gilson J, Sutton P, Zilberman N (2016) Multidecadal change of the South Pacific Gyre circulation. J Phys Ocean 46:1871–1883CrossRefGoogle Scholar
  35. Salinger MJ, Renwick JA, Mullan AB (2001) Interdecadal Pacific Oscillation and South Pacific climate. Int J Climatol 21:1705–1721CrossRefGoogle Scholar
  36. Sasaki YN, Minobe S, Schneider N, Kagimoto T, Nonaka M, Sasaki H (2008) Decadal sea level variability in the South Pacific in a global eddy-resolving ocean model hindcast. J Phys Ocean 38:1731–1747CrossRefGoogle Scholar
  37. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40CrossRefGoogle Scholar
  38. Shakun JD, Shaman J (2009) Tropical origins of North and South Pacific decadal variability. Geophys Res Lett 36:L19711CrossRefGoogle Scholar
  39. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to ENSO and Southern Annular Mode variability. J Geophys Res. doi: 10.1029/2007JC004269 Google Scholar
  40. Tatebe H, Imada Y, Mori M, Kimoto M, Hasumi H (2013) Control of decadal and bidecadal climate variability in the tropical Pacific by the off-equatorial South Pacific Ocean. J Climate 26:6524–6534CrossRefGoogle Scholar
  41. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  42. Van Oldenborgh GJ, te Raa LA, Dijkstra HA, Philip SY (2009) Frequency-amplitude-dependence effect of the Atlantic meridional overturning on the tropical Pacific Ocean. Ocean Sci 5:293–301CrossRefGoogle Scholar
  43. Venegas SA, Mysak LA, Straub DN (1998) An interdecadal climate cycle in the South Atlantic and its links to other ocean basins. J Geophys Res 103:24723–24736CrossRefGoogle Scholar
  44. Wallace JM, Dickinson RE (1972) Empirical orthogonal representation of time series in the frequency domain. Part I: Theoretical considerations. J Appl Meteor 11:887–892CrossRefGoogle Scholar
  45. White WB, Annis J (2004) Influence of the Antarctic circumpolar wave on El Niño and its multidecadal changes from 1950 to 2011. J Geophys Res 109:C06019. doi: 10.1029/2002JC001666 CrossRefGoogle Scholar
  46. White WB, Peterson RG (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature and sea ice extent. Nature 380:699–702CrossRefGoogle Scholar
  47. White WB, Chen S-C, Allan RJ, Stone RC (2002) Positive feedbacks between the Antarctic Circumpolar Wave and the global El Niño-Southern Oscillation Wave. J Geophys Res 107(C10):3165. doi: 10.1029/2000JC000581 CrossRefGoogle Scholar
  48. Wilks D (2011) Statistical methods in the atmospheric sciences. Academic, ElsevierGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ramiro I. Saurral
    • 1
    Email author
  • Francisco J. Doblas-Reyes
    • 2
    • 3
  • Javier García-Serrano
    • 2
  1. 1.Departamento de Ciencias de la Atmósfera y los Océanos (DCAO; FCEN, UBA)Centro de Investigaciones del Mar y la Atmósfera (CIMA; UBA-CONICET), UMI-IFAECI/CNRSBuenos AiresArgentina
  2. 2.Barcelona Supercomputing Center (BSC)BarcelonaSpain
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations