Climate Dynamics

, Volume 50, Issue 3–4, pp 971–990 | Cite as

Moisture origin and transport processes in Colombia, northern South America

  • I. HoyosEmail author
  • F. Dominguez
  • J. Cañón-Barriga
  • J. A. Martínez
  • R. Nieto
  • L. Gimeno
  • P. A. Dirmeyer


We assess the spatial structure of moisture flux divergence, regional moisture sources and transport processes over Colombia, in northern South America. Using three independent methods the dynamic recycling model (DRM), FLEXPART and the Quasi-isentropic back-trajectory (QIBT) models we quantify the moisture sources that contribute to precipitation over the region. We find that moisture from the Atlantic Ocean and terrestrial recycling are the most important sources of moisture for Colombia, highlighting the importance of the Orinoco and Amazon basins as regional providers of atmospheric moisture. The results show the influence of long-range cross-equatorial flow from the Atlantic Ocean into the target region and the role of the study area as a passage of moisture into South America. We also describe the seasonal moisture transport mechanisms of the well-known low-level westerly and Caribbean jets that originate in the Pacific Ocean and Caribbean Sea, respectively. We find that these dynamical systems play an important role in the convergence of moisture over western Colombia.


Colombian climate and variability Atmospheric moisture transport processes Recycling and terrestrial moisture sources Oceanic moisture source 



This research has been supported by the USAID-NSF PEER program (Cycle 1, project 31) and the Universidad de Antioquia through its programs CODI (Convocatoria Programática 2013, Project PRG 13-2-03), Project PI12-1-03 and Fondo de Pasajes Internacionales. Isabel Hoyos is also supported by the Programa Enlazamundos from Alcaldía de Medellín. Francina Dominguez is funded by NSF award AGS 1045260. Raquel Nieto and Luis Gimeno acknowledge funding by the Spanish MINECO and FEDER within the project TRAMO. Raquel Nieto is also supported by the CNPq Grant 314734/2014-7 by the Brazilian Government. The TRMM data used in this study were acquired as part of the Tropical Rainfall Measuring Mission (TRMM). The algorithms were developed by the TRMM Science Team. The data were processed by the TRMM Science Data and Information System (TSDIS) and the TRMM office; they are archived and distributed by the Goddard Distributed Active Archive Center. TRMM is an international project jointly sponsored by the Japan National Space Development Agency (NASDA) and the US National Aeronautics and Space Administration (NASA) Office of Earth Sciences. The authors thank the valuable comments and suggestions of the anonymous reviewers that greatly improve the final version of the paper.


  1. Amador JA (2008) The intra-Americas sea low-level jet. Ann N Y Acad Sci 1146(1):153188. doi: 10.1196/annals.1446.012 CrossRefGoogle Scholar
  2. Andersson E, Bauer P, Beljaars A, Chevallier F, Hólm E, Janisková M, Kållberg P, Kelly G, Lopez P, Mcnally A, Moreau E, Simmons AJ, Thépaut JN, Tompkins AM (2005) Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull Am Meteorol Soc 86(3):387–402. doi: 10.1175/bams-86-3-387 CrossRefGoogle Scholar
  3. Arias PA, Martínez JA, Vieira SC (2015) Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim Dyn. doi: 10.1007/s00382-015-2511-7
  4. Bass MS, Finer M, Jenkins C, Clinton N, Kreft H, Cisneros-Heredia DF, McCracken SF et al (2010) Global conservation significance of Ecuadors Yasuní National Park. PLoS One 5(1):e8767. doi: 10.1371/journal.pone.0008767 CrossRefGoogle Scholar
  5. Bhushan S, Barros AP (2007) A numerical study to investigate the relationship between moisture convergence patterns and orography in central Mexico. J Hydrometeorol 8(6):1264–1284. doi: 10.1175/2007JHM791.1
  6. Burde GI, Zangvil A (2001) The estimation of regional precipitation recycling. Part I: review of recycling models. J Climate 14(12):24972508. doi: 10.1175/1520-0442(2001)014<2497:teorpr>;2
  7. Buytaert W, Biévre BD (2012) Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resourc Res 48(8):1–13CrossRefGoogle Scholar
  8. Carvajal YE, Jiménez HE, Materón HM (1998) Incidencia del fenómeno del Niño en la hidroclimatología del valle del río Cauca-Colombia. B Inst Fr Étud Andines 27(3):743–751Google Scholar
  9. Célleri R, Feyen J (2009) The hydrology of tropical Andean ecosystems: importance, knowledge status, and perspectives. Mount Res Dev 29(4):350–355CrossRefGoogle Scholar
  10. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  11. Dirmeyer PA, Brubaker KL (1999) Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993. J Geophys Res 104(D16):19383–19397. doi: 10.1029/1999jd900222
  12. Dirmeyer PA, Brubaker KL (2007) Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J Hydrometeorol 8(1):20–37. doi: 10.1175/jhm557.1
  13. Dominguez F, Kumar P, Liang XZ, Ting M (2006) Impact of atmospheric moisture storage on precipitation recycling. J Clim 19(8):1513–1530CrossRefGoogle Scholar
  14. Doughty CE, Goulden ML (2008) Seasonal patterns of tropical forest leaf area index and CO\(_2\) exchange. J Geophys Res. doi: 10.1029/2007jg000590
  15. Durán-Quesada A, Reboita M, Gimeno L (2012) Precipitation in tropical America and the associated sources of moisture: a short review. Hydrol Sci J 57(4):612–624CrossRefGoogle Scholar
  16. Durán-Quesada AM, Gimeno L, Amador J, Nieto R (2010) Moisture sources for Central America: identification of moisture sources using a lagrangian analysis technique. J Geophys Res Atmos (1984–2012) 115(D5):1–15Google Scholar
  17. Eslava (1994) Climatología del Pacífico Colombiano, 1st Ed. Academia Colombiana de Ciencias Geofísicas. Santafé de Bogotá D.CGoogle Scholar
  18. Garreaud R (2009) The Andes climate and weather. Adv Geosci 22(22):3–11. doi: 10.5194/adgeo-22-3-2009 CrossRefGoogle Scholar
  19. Geer AJ, Bauer P, Lopez P (2008) Lessons learnt from the operational 1D + 4D-var assimilation of rain- and cloud-affected SSM/I observations at ECMWF. QJR Meteorol Soc 134(635):1513–1525. doi: 10.1002/qj.304 CrossRefGoogle Scholar
  20. Hartmann DL (1994) Global Physical Climatology (International Geophysics). Academic. San Diego, CaliforniaGoogle Scholar
  21. Hastings DA, Dunbar PK (1998) Development and assessment of the Global Land One-km Base Elevation Digital Elevation Model (globe). Int Arch Photogramm Remote Sens Spat Inf Sci 32(4):218–221Google Scholar
  22. Hoyos I, Baquero-Bernal A, Jacob D, Rodríguez BA (2013) Variability of extreme events in the Colombian Pacific and Caribbean catchment basins. Clim Dyn 40(7–8):1985–2003. doi: 10.1007/s00382-012-1487-9 CrossRefGoogle Scholar
  23. Hoyos I, Baquero-Bernal A, Hagemann S (2013) How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin? Clim Dyn 41(5–6):1269–1290. doi: 10.1007/s00382-013-1685-0
  24. Hoyos I, Arenas-Suárez T, Martínez JA, Rodríguez B (2014) Which climate traits can and cannot be represented by reanalyses and reconstructed data sets over colombia? In: LOTRED-SA 3rd International Symposium Climate change and human impact in central and South America over the last 2000 years Observations and Models. Accessed 15 Feb 2017
  25. IDEAM (2005) Atlas climatológico de Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia, República de Colombia. ISBN:958-8067-14-6Google Scholar
  26. Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL, Running SW (2001) Water in a changing world. Ecol Appl 11(4):1027–1045. doi: 10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2 CrossRefGoogle Scholar
  27. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) Ncepdoe AMIP-ii reanalysis (r-2). Bull Am Meteorol Soc 83(11):16311643. doi: 10.1175/bams-83-11-1631 CrossRefGoogle Scholar
  28. Lewis WM, Hamilton SK, Lasi MA, Rodriguez M III, JFS, (2000) Ecological determinism on the orinoco floodplain. BioScience 50(8):681–692. doi: 10.1641/0006-3568(2000)050[0681:EDOTOF]2.0.CO;2
  29. Lin YL, Chiao S, Wang TA, Kaplan ML, Weglarz RP (2001) Some common ingredients for heavy orographic rainfall. Weather Forecast 16(6):633–660. doi:DOIurl10.1175/1520-0434(2001) 016<0633:SCIFHO>2.0.CO;2Google Scholar
  30. López ME, Howell WE (1967) Katabatic winds in the equatorial Andes. J Atmos Sci 24(1):29–35. doi: 10.1175/1520-0469(1967) 024<0029:KWITEA>2.0.CO;2
  31. Lorenz C, Kunstmann H (2012) The hydrological cycle in three state-of-the-art reanalyses: Intercomparison and performance analysis. J Hydrometeor 13(5):1397–1420. doi: 10.1175/jhm-d-11-088.1
  32. Makarieva AM, Gorshkov VG, Sheil D, Nobre AD, Li BL (2013) Where do winds come from? a new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos Chem Phys 13(2):1039–1056. doi: 10.5194/acp-13-1039-2013
  33. Mapes BE, Warner TT, Xu M, Negri AW (2003) Diurnal patterns of rainfall in northwestern South America. part I: Observations and context. Mon Weather Rev 131(5):799–812. doi: 10.1175/1520-0493(2003) 131<0799:DPORIN>2.0.CO;2
  34. Martínez JA, Dominguez F (2014) Sources of atmospheric moisture for the La Plata river Basin. J Clim 27(17):6737–6753. doi: 10.1175/jcli-d-14-00022.1
  35. Mesa O, Poveda G, Carvajal L (1997) Introducción al clima de Colombia. Universidad Nacional. Santafé de Bogotá, D.CGoogle Scholar
  36. Montgomery DR, Balco G, Willett SD (2001) Climate, tectonics, and the morphology of the Andes. Geology 29(7):579–582. doi: 10.1130/0091-7613(2001) 029<0579:CTATMO>2.0.CO;2
  37. Muñoz E, Busalacchi AJ, Nigam S, Ruiz-Barradas A (2008) Winter and summer structure of the caribbean low-level jet. J Clim 21(6):1260–1276. doi: 10.1175/2007jcli1855.1 CrossRefGoogle Scholar
  38. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858. doi: 10.1038/35002501 CrossRefGoogle Scholar
  39. Numaguti A (1999) Origin and recycling processes of precipitating water over the eurasian continent: experiments using an atmospheric general circulation model. J Geophys Res 104(D2):1957. doi: 10.1029/1998jd200026 CrossRefGoogle Scholar
  40. Pabón J (2003) El cambio climático global y su manifestación en Colombia. Cuadernos Geografía 12:111–119Google Scholar
  41. Pabón J, Eslava J, Gómez R (2001) Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precicpitación en Colombia. Meteorología Colombiana 4:47–59Google Scholar
  42. Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys Res Lett 27(11):1675–1678. doi: 10.1029/1999GL006091 CrossRefGoogle Scholar
  43. Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234(1):3–27. doi: 10.1016/j.palaeo.2005.10.031 CrossRefGoogle Scholar
  44. Poveda G, Jaramillo L, Vallejo LF (2014) Seasonal precipitation patterns along pathways of south american low-level jets and aerial rivers. Water Resourc Res 50(1):98–118. doi: 10.1002/2013WR014087 CrossRefGoogle Scholar
  45. Roe GH (2005) Orographic precipitation. Annu Rev Earth Planet Sci 33:645–671. doi: 10.1146/ CrossRefGoogle Scholar
  46. Sakamoto MS, Ambrizzi T, Poveda G (2012) Moisture sources and life cycle of convective systems over Western Colombia. Adv Meteorol 2011:1–11. doi: 10.1155/2011/890759 CrossRefGoogle Scholar
  47. Snow JW (1976) The climate of northern South America. In: Schwerdtfeger W (ed) Climates of Central and South America, World Survey of Climatology, vol 12. Elsevier Scientific Publishing Co, Amsterdam, pp 295–403Google Scholar
  48. Stohl A, James P (2004) A lagrangian analysis of the atmospheric branch of the global water cycle. part I: Method description, validation, and demonstration for the (August 2002) Flooding in central Europe. J Hydrometeorol 5(4):656678. doi: 10.1175/1525-7541(2004)005<0656:alaota>;2
  49. Stohl A, Forster C, Frank A, Seibert P, Wotawa G (2005) Technical note: The lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5(9):2461–2474. doi: 10.5194/acp-5-2461-2005
  50. Tavolato C, Isaksen L (2010) Data usage and quality control for ERA-40, ERA- Interim, and the operational ECMWF data assimilation system. ERA Report Series 7, ECMWF, ReadingGoogle Scholar
  51. Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24(18):4907–4924. doi: 10.1175/2011jcli4171.1 CrossRefGoogle Scholar
  52. Uppala SM, Kälberg PW, Simmons AJ (2005) The era-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  53. Vuille M, Burns SJ, Taylor BL, Cruz FW, Bird BW, Abbott MB, Kanner LC, Cheng H, Novello VF (2012) A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim Past 8(4):1309–1321. doi: 10.5194/cp-8-1309-2012 CrossRefGoogle Scholar
  54. Wagener T, Sivapalan M, Troch P, McGlynn B, Harman C et al (2010) The future of hydrology: An evolving science for a changing world. Water Resourc Res. doi: 10.1029/2009WR008906
  55. Wang C (2007) Variability of the caribbean low-level jet and its relations to climate. Clim Dyn 29(4):411422. doi: 10.1007/s00382-007-0243-z
  56. Wang C, Lee SK (2007) Atlantic warm pool, caribbean low-level jet, and their potential impact on atlantic hurricanes. Geophys Res Lett. doi: 10.1029/2006gl028579
  57. Wang H, Fu R (2002) Cross-equatorial flow and seasonal cycle of precipitation over South America. J Clim 15(13):1591–1608. doi: 10.1175/1520-0442(2002)015<1591:cefasc>;2
  58. Waylen PR, Poveda G (2002) El Niño-Southern Oscillation and aspects of western South America hydro-climatology. Hydrol Process 16(6):1247–1260. doi: 10.1002/hyp.1060 CrossRefGoogle Scholar
  59. Zhou J, Lau KM (2001) Principal modes of interannual and decadal variability of summer rainfall over South America. Int J Climatol 21(13):16231644. doi: 10.1002/joc.700 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Facultad de Ingeniería, Grupo GAIAUniversidad de Antioquia, SIU/UdeAMedellínColombia
  2. 2.Instituto de Física, Grupo de Fundamentos y Enseñanza de la Física y los Sistemas DinámicosUniversidad de AntioquiaMedellínColombia
  3. 3.Department of Atmospheric SciencesUniversity of Illinois at Urbana-ChampaignChampaignUSA
  4. 4.Department of Atmospheric SciencesUniversity of ArizonaTucsonUSA
  5. 5.EPhysLab (Environmental Physics Laboratory)Facultade de Ciencias Universidade de VigoOurenseSpain
  6. 6.Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric SciencesUniversity of São PauloSão PauloBrazil
  7. 7.Center for Ocean-Land-Atmosphere StudiesGeorge Mason UniversityFairfaxUSA

Personalised recommendations