Climate Dynamics

, Volume 50, Issue 3–4, pp 901–919 | Cite as

Seasonal ENSO phase locking in the Kiel Climate Model: The importance of the equatorial cold sea surface temperature bias

Article

Abstract

The El Niño/Southern Oscillation (ENSO) is characterized by a seasonal phase locking, with strongest eastern and central equatorial Pacific sea surface temperature (SST) anomalies during boreal winter and weakest SST anomalies during boreal spring. In this study, key feedbacks controlling seasonal ENSO phase locking in the Kiel Climate Model (KCM) are identified by employing Bjerknes index stability analysis. A large ensemble of simulations with the KCM is analyzed, where the individual runs differ in either the number of vertical atmospheric levels or coefficients used in selected atmospheric parameterizations. All integrations use the identical ocean model. The ensemble-mean features realistic seasonal ENSO phase locking. ENSO phase locking is very sensitive to changes in the mean-state realized by the modifications described above. An excessive equatorial cold tongue leads to weak phase locking by reducing the Ekman feedback and thermocline feedback in late boreal fall and early boreal winter. Seasonal ENSO phase locking also is sensitive to the shortwave feedback as part of the thermal damping in early boreal spring, which strongly depends on eastern and central equatorial Pacific SST. The results obtained from the KCM are consistent with those from models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5).

Keywords

Seasonal ENSO phase locking SST bias Kiel Climate Model 

Notes

Acknowledgements

This study is supported by the SACCUS project of the German Ministry of Education and Research (BMBF), the European Union’s PREFACE project and the SFB754 “Climate-Biochemistry Interactions in the tropical Ocean”. The climate model integrations were performed at the Computing Centre of Kiel University. We thank Dietmar Dommenget and an anonymous reviewer for helpful comments and feedback on this work. We thank Zhaoyang Song for his help for the Bjerknes Stability Index calculation. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 2 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Supplementary material

382_2017_3648_MOESM1_ESM.docx (247 kb)
Supplementary material 1 (DOCX 247 KB)

References

  1. An S-I, Jin F-F (2000) An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys Res Lett 27:2573–2576. doi: 10.1029/1999GL011090 CrossRefGoogle Scholar
  2. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere–ocean model: influence of the basic state, ocean geometry and nonlinearity. J AtmosSci 46:1687–1712CrossRefGoogle Scholar
  3. Bayr T, Dommenget D (2013) The tropospheric land-sea warming contrast as the driver of tropical sea level pressure changes. J Climate 26:1387–1402CrossRefGoogle Scholar
  4. Bejarano L, Jin F-F (2008) Coexistence of equatorial coupled modes of ENSO. J Clim 21:3051–3067. doi: 10.1175/2007JCLI1679.1 CrossRefGoogle Scholar
  5. Bellenger H, Guilyardi E, Leloup J, et al (2014) ENSO representation in climate models: From CMIP3 to CMIP5. ClimDyn 42:1999–2018. doi: 10.1007/s00382-013-1783-z
  6. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific 1. Mon Weather Rev 97:163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 CrossRefGoogle Scholar
  7. Brönnimann S, Luterbacher J, Staehelin J et al (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature 431:971–974. doi: 10.1038/nature02982 CrossRefGoogle Scholar
  8. Carton JA, Giese BS (2008) A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017. doi: 10.1175/2007MWR1978.1 CrossRefGoogle Scholar
  9. Chang P, Wang B, Li T, Ji L (1995) Interactions between the seasonal cycle and the Southern Oscillation—frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophys Res Lett 21:2817–2820. doi: 10.1029/94GL02759 CrossRefGoogle Scholar
  10. Davey MK, Huddleston M, Sperber KR, et al (2002) STOIC: a study of coupled model climatology and variability in tropical regions. ClimDyn 118:403–420Google Scholar
  11. Dommenget D, Yu Y (2016) The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking. ClimDyn 47:1–12. doi: 10.1007/s00382-016-3034-6
  12. Dommenget D, Haase S, Bayr T, Frauen C (2014) Analysis of the Slab Ocean El Nino atmospheric feedbacks in observed and simulated ENSO dynamics. ClimDyn 42:3187–3205. doi: 10.1007/s00382-014-2057-0
  13. Duan WS, Zhang R, Yu YS, Tian B (2013) The role of nonlinearities associated with air-sea coupling processes in El Niño’s peak-phase locking. Sci China. Earth Sci 56:1988–1996. doi: 10.1007/s11430-013-4629-y Google Scholar
  14. Fedorov AV, Philander SG (2001) A Stability Analysis of Tropical Ocean–Atmosphere Interactions: Bridging Measurements and Theory for El Niño. J Clim 14:3086–3101. doi: 10.1175/1520-0442(2001)014<3086:ASAOTO>2.0.CO;2 CrossRefGoogle Scholar
  15. Graham FS, Brown JN, Langlais C, et al (2014) Effectiveness of the Bjerknes stability index in representing ocean dynamics. ClimDyn 43:1–16. doi: 10.1007/s00382-014-2062-3
  16. Guilyardi E (2006) El Niño-mean state—Seasonal cycle interactions in a multi-model ensemble. ClimDyn 26:329–348. doi: 10.1007/s00382-005-0084-6
  17. Guilyardi E, Wittenberg A, Fedorov A, et al (2009) Understanding El Niño in Ocean–atmosphere general circulation models: progress and challenges. Bull Am MeteorolSoc 90:325–340. doi: 10.1175/2008BAMS2387.1
  18. Ham Y-G, Kug J-S (2014) ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. ClimDyn 43:305–318. doi: 10.1007/s00382-014-2064-1
  19. Ham Y-G, Kug J-S, Kim D-H, et al (2012) What controls phase-locking of ENSO to boreal winter in coupled GCMs? ClimDyn 40:1551–1568. doi: 10.1007/s00382-012-1420-2
  20. Harlaß J, Latif M, Park W (2015) Improving climate model simulation of tropical Atlantic sea surface temperature: The importance of enhanced vertical atmosphere model resolution. Geophys Res Lett 42:2401–2408. doi: 10.1002/2015GL063310 CrossRefGoogle Scholar
  21. Harrison DE, Vecchi GA (1999) On the termination of El Niño. Geophys Res Lett 26:1593–1596. doi: 10.1029/1999GL900316 CrossRefGoogle Scholar
  22. Jin EK, Kinter JL (2009) Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. ClimDyn 32:675–691. doi: 10.1007/s00382-008-0418-2
  23. Jin F-F, Neelin JD, Ghil M (1996) El Niño/Southern Oscillation and the annual cycle: subharmonic frequency-locking and aperiodicity. Phys D Nonlinear Phenom 98:442–465. doi: 10.1016/0167-2789(96)00111-X
  24. Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:2–5. doi: 10.1029/2006GL027221 Google Scholar
  25. Kim ST, Jin F-F (2011a) An ENSO stability analysis. Part I: Results from a hybrid coupled model. ClimDyn 36:1593–1607. doi: 10.1007/s00382-010-0796-0
  26. Kim ST, Jin F-F (2011b) An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. ClimDyn 36:1609–1627. doi: 10.1007/s00382-010-0872-5
  27. Kim D, Jang Y-S, Kim D-H et al (2011) El Niño-Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J Geophys Res Atmos 116:D22112. doi: 10.1029/2011JD016526 Google Scholar
  28. Kim ST, Cai W, Jin F-F, Yu J-Y (2013) ENSO stability in coupled climate models and its association with mean state. ClimDyn 42:3313–3321. doi: 10.1007/s00382-013-1833-6
  29. Klein S, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606CrossRefGoogle Scholar
  30. Lacagnina C, Selten F (2013) Changes in the cloud properties in response to El Niño: a bivariate approach. ClimDyn 40:2973–2991. doi: 10.1007/s00382-012-1645-0
  31. Latif M, Graham NE (1992) How Much Predictive Skill Is Contained in the Thermal Structure of an Oceanic GCM? J Phys Oceanogr 22:951–962CrossRefGoogle Scholar
  32. Latif M, Sperber K, Arblaster J, et al (2001) ENSIP: the El Nino simulation intercomparison project. ClimDyn 18:255–276. doi: 10.1007/s003820100174
  33. Latif M, Semenov VA, Park W (2015) Super El Niños in response to global warming in a climate model. Clim Change 132:489–500. doi: 10.1007/s10584-015-1439-6
  34. Levine AFZ, McPhaden MJ (2015) The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys Res Lett 42:5034–5041. doi: 10.1002/2015GL064309 CrossRefGoogle Scholar
  35. Li G, Xie S-P (2014) Tropical Biases in CMIP5 Multimodel Ensemble: The Excessive Equatorial Pacific Cold Tongue and Double ITCZ Problems. J Clim 27:1765–1780CrossRefGoogle Scholar
  36. Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J Clim 25:4275–4293. doi: 10.1175/JCLI-D-11-00178.1 CrossRefGoogle Scholar
  37. Lübbecke JF, Mcphaden MJ (2013) A comparative stability analysis of Atlantic and Pacific Niño modes. J Clim 26:5965–5980. doi: 10.1175/JCLI-D-12-00758.1 CrossRefGoogle Scholar
  38. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation 27, Institut Pierre-Simon LaplaceGoogle Scholar
  39. Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1 Ocean General Circulation Model Reference Manual. Note du Pole de modélisation 11, Institut Pierre-Simon LaplaceGoogle Scholar
  40. Mauritsen T, Stevens B, Roeckner E et al (2012) Tuning the climate of a global model. J Adv Model Earth Syst. doi: 10.1029/2012MS000154 Google Scholar
  41. McGregor S, Timmermann A, Schneider N et al (2012) The Effect of the South Pacific Convergence Zone on the Termination of El Niño Events and the Meridional Asymmetry of ENSO. J Clim 25:5566–5586. doi: 10.1175/JCLI-D-11-00332.1 CrossRefGoogle Scholar
  42. McGregor S, Ramesh N, Spence P et al (2013) Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys Res Lett 40:749–754. doi: 10.1002/grl.50136 CrossRefGoogle Scholar
  43. Neelin, JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. JGR Ocean 103: 14261–14290. doi: 10.1029/97JC03424
  44. Neelin JD, Jin F-F, Syu HH (2000) Variations in ENSO phase locking. J Clim 13:2570–2590. doi: 10.1175/1520-0442(2000)013<2570:VIEPL>2.0.CO;2 CrossRefGoogle Scholar
  45. Nordeng TE (1994) Extended Versions of the Convective Parametrization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. In Technical Memorandum; European Center for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 1994Google Scholar
  46. Park W, Keenlyside N, Latif M et al (2009) Tropical Pacific Climate and Its Response to Global Warming in the Kiel Climate Model. J Clim 22:71–92. doi: 10.1175/2008JCLI2261.1 CrossRefGoogle Scholar
  47. Rashid H, Hirst AC (2015) Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model. ClimDyn. doi: 10.1007/s00382-015-2633-y
  48. Rayner N, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late Nineteenth Century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  49. Reynolds RW (2009) What’s New in Version 2. NOAA/NCDC Rep 1–10Google Scholar
  50. Reynolds RW, Smith TM, Liu C et al (2007) Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J Clim 20(22):5473–5496CrossRefGoogle Scholar
  51. Roeckner E, Baeuml G, Bonaventura L, et al (2003) The atmospheric general circulation model ECHAM 5. PART I: Model description. Max Planck Institute for Meteorology Rep. 349Google Scholar
  52. Simmons EAJ, Gibson JK (2000) The ERA-40 project plan. Tech Rep, ERA-40 Project Report Series 1, ECMWF, Reading, United KingdomGoogle Scholar
  53. Stein K, Schneider N, Timmermann A, Jin F-F (2010) Seasonal synchronization of ENSO events in a linear stochastic model. J Clim 23:5629–5643CrossRefGoogle Scholar
  54. Stein K, Timmermann A, Schneider N et al (2014) ENSO Seasonal Synchronization Theory. J Clim 27:5285–5310. doi: 10.1175/JCLI-D-13-00525.1 CrossRefGoogle Scholar
  55. Stuecker MF, Timmermann A, Jin F-F et al (2013) A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat Geosci 6:540–544. doi: 10.1038/ngeo1826
  56. Sundqvist H (1978) A parameterization scheme for non-convective condensation including prediction of cloud water content. Q J R MeteorolSoc 104:677–690. doi: 10.1002/qj.49710444110
  57. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am MeteorolSoc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1
  58. Tompkins AM (2002) A prognostic parameterization for the Subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59:1917–1942. doi: 10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2 CrossRefGoogle Scholar
  59. Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Niño/Southern Oscillation. Q J R MeteorolSoc 124:1985–2004. doi: 10.1002/qj.49712455010
  60. Tziperman E, Cane MA, Zebiak SE et al (1995) Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the Quasi-Periodicity route to chaos. J AtmosSci 52:293–306. doi: 10.1175/1520-0469(1995)052<0293:IALTTS>2.0.CO;2 CrossRefGoogle Scholar
  61. Tziperman E, Cane MA, Zebiak SE et al (1998) Locking of El Niño’s Peak Time to the End of the Calendar Year in the Delayed Oscillator Picture of ENSO. J Clim 11:2191–2199. doi: 10.1175/1520-0442(1998)011<2191:LOENOS>2.0.CO;2 CrossRefGoogle Scholar
  62. Valcke S (2006) OASIS3 user guide. PRISM Tech Rep No 3Google Scholar
  63. Wang C, Picaut J (2004) Understanding ENSO physics: a review. GeophysMonogr AGU 147:21–48Google Scholar
  64. Webster PJ, Magaña VO, Palmer TN et al (1998) Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res Ocean 103:14451–14510. doi: 10.1029/97JC02719 CrossRefGoogle Scholar
  65. Xiang B, Wang B, Ding Q, et al (2011) Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. ClimDyn 39:1413–1430. doi: 10.1007/s00382-011-1164-4
  66. Xiao H, Mechoso CR (2009) Seasonal cycle–El Niño relationship: validation of hypotheses. J AtmosSci 66:1633–1653CrossRefGoogle Scholar
  67. Zhang X, Lin W, Zhang M (2007) Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean-atmosphere general circulation models. J Geophys Res 112:D12102. doi: 10.1029/2006JD007878 CrossRefGoogle Scholar
  68. Zheng W, Yu Y (2007) ENSO phase-locking in an ocean-atmosphere coupled model FGCM-1.0. AdvAtmosSci 24:833–844. doi: 10.1007/s00376-007-0833-z
  69. Zheng Y, Lin J-L, Shinoda T (2012) The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: Upper ocean heat budget and feedback analysis. J Geophys Res 117(C5).doi: 10.1029/2011jc007746
  70. Zhu J, Kumar A, Huang B (2015) The relationship between thermocline depth and SST anomalies in the eastern equatorial Pacific: Seasonality and decadal variations. Geophys Res Lett 42:4507–4515. doi: 10.1002/2015GL064220 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • C. Wengel
    • 1
  • M. Latif
    • 1
    • 2
  • W. Park
    • 1
  • J. Harlaß
    • 1
  • T. Bayr
    • 1
  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.University of KielKielGermany

Personalised recommendations