Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Moisture sources and pathways associated with the spatial variability of seasonal extreme precipitation over Canada

  • 584 Accesses

  • 10 Citations

Abstract

Nine regions with spatially coherent seasonal 3-day total precipitation extremes across Canada were identified using a clustering method that is compliant to the extreme value theory. Using storm back-trajectory analyses, we then identified possible moisture sources and pathways that are conducive to occurrences of seasonal extreme precipitation events in four seasons for the nine regions identified. Moisture pathways for all extreme precipitation events were clustered to nine dominant moisture pathway patterns using the self-organizing map method. Results show that horizontal moisture pathway patterns and their occurrences were not evidently different between seasons. However, warm (summer and fall) and cold (winter and spring) seasons show considerable differences in the spreading of moisture sources in all nine regions, even though many sources do not frequently contribute to extreme precipitation events. In all four seasons, terrestrial evapotranspiration had provided major moisture sources to many extreme precipitation events occurred in inland regions. Central Canada had received more widespread moisture sources over surrounding oceans of North America than western and eastern Canada, because of more diverse moisture pathway patterns for central Canada that transport moisture from all surrounding oceans to central Canada. Extreme precipitation in southwestern Canada mainly resulted from atmospheric rivers over the North Pacific Ocean. For northwestern Canada, moisture pathway patterns were from the northern Pacific, Arctic and northern Atlantic oceans, even though more than 78% of trajectories for northwestern Canada were from the North Pacific. Westerlies from the North Pacific Ocean and northern polar jet streams controlled dominant pathways to central and eastern Canada. More extreme precipitation events over Canada were fed by the Arctic Ocean in warm than in cold seasons.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmari H, Blais E-L, Greshuk J (2016) The 2014 flood event in the Assiniboine River Basin: causes, assessment and damage. Can Water Resour J 1–2:85–93. doi:10.1080/07011784.2015.1070695

  2. Alexander MA, Scott JD, Swales D, Hughes M, Mahoney K, Smith CA (2015) Moisture pathways into the U.S. intermountain west associated with heavy winter precipitation events. J Hydrometeorol 16(3):1184–1206. doi:10.1175/jhm-d-14-0139.1

  3. Alila Y (1999) A hierarchical approach for the regionalization of precipitation annual maxima in Canada. J Geophys Res 104(D24):31645–31655. doi:10.1029/1999jd900764

  4. Asong ZE, Khaliq MN, Wheater HS (2014) Regionalization of precipitation characteristics in the Canadian Prairie Provinces using large-scale atmospheric covariates and geophysical attributes. Stoch Environ Res Risk A 29(3):875–892. doi:10.1007/s00477-014-0918-z

  5. Bernard E, Naveau P, Vrac M (2013) Clustering of maxima: spatial dependencies among heavy rainfall in France. J Clim 26(20):7929–7937. doi:10.1175/JCLI-D-12-00836.1

  6. Blais E-L, Greshuk J, Stadnyk T (2016) The 2011 flood event in the Assiniboine River Basin: causes, assessment and damages. Can Water Resour J 41(1–2):74–84. doi:10.1080/07011784.2015.1046139

  7. Boschat G, Pezza A, Simmonds I, Perkins S, Cowan T, Purich A (2014) Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia. Clim Dyn 44(7–8):1823–1840. doi:10.1007/s00382-014-2214-5

  8. Bosilovich MG, Chern J-D (2006) Simulation of water sources and precipitation recycling for the MacKenzie, Mississippi, and Amazon River Basins. J Hydrometeorol 7(3):312–329

  9. Bracken C, Rajagopalan B, Alexander M, Gangopadhyay S (2015) Spatial variability of seasonal extreme precipitation in the western United States. J Geophys Res Atmos 120(10):4522–4533. doi:10.1002/2015jd023205

  10. Brimelow JC, Reuter GW (2005) Transport of atmospheric moisture during three extreme rainfall events over the Mackenzie River Basin. J Hydrometeorol 6(4):423–440. doi:10.1175/JHM430.1

  11. Buttle JM, Allen DM, Caissie D, Davison B, Hayashi M, Peters DL, Pomeroy JW, Simonovic S, St-Hilaire A, Whitfield PH (2016) Flood processes in Canada: regional and special aspects. Can Water Resour J 41(1–2):7–30. doi:10.1080/07011784.2015.1131629

  12. Cassano EN, Glisan JM, Cassano JJ, Gutowski WJ, Seefeldt MW (2015) Self-organizing map analysis of widespread temperature extremes in Alaska and Canada. Clim Res 62(3):199–218. doi:10.3354/cr01274

  13. Collins MJ, Kirk JP, Pettit J, DeGaetano AT, McCown MS, Peterson TC, Means TN, Zhang X (2014) Annual floods in New England (USA) and Atlantic Canada: synoptic climatology and generating mechanisms. Phys Geogr 35(3):195–219. doi:10.1080/02723646.2014.888510

  14. DeGaetano AT (1998) A Smirnov test-based clustering algorithm with application to extreme precipitation data. Water Resour Res 34(2):169–176. doi:10.1029/97wr03133

  15. Deshpande RD, Dave M, Padhya V, Kumar H, Gupta SK (2015) Water vapour source identification for daily rain events at Ahmedabad in semi-arid western India: wind trajectory analyses. Meteorol Appl 22(4):754–762. doi:10.1002/met.1515

  16. Dettinger M (2011) Climate change, atmospheric rivers, and floods in California—a multimodel analysis of storm frequency and magnitude changes. J Am Water Resour Assoc 47(3):514–523. doi:10.1111/j.1752-1688.2011.00546.x

  17. Dirmeyer PA, Brubaker KL (2007) Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J Hydrometeorol 8(1):20–37. doi:10.1175/jhm557.1

  18. Dirmeyer PA, Wei J, Bosilovich MG, Mocko DM (2014) Comparing evaporative sources of terrestrial precipitation and their extremes in MERRA using relative entropy. J Hydrometeorol 15(1):102–116. doi:10.1175/jhm-d-13-053.1

  19. Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308

  20. Mekis É, Vincent LA (2011) An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos Ocean 49(2):163–177. doi:10.1080/07055900.2011.583910

  21. Environment Canada (2014) Canada’s top ten weather stories for 2013. http://www.ec.gc.ca/meteo-weather/default.asp?lang5En&n55BA5EAFC-1

  22. Fleming ZL, Monks PS, Manning AJ (2012a) Review: untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos Res 104–105:1–39. doi:10.1016/j.atmosres.2011.09.009

  23. Fleming ZL, Monks PS, Manning AJ (2012b) Review: untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos Res 104–105:1–39. doi:10.1016/j.atmosres.2011.09.009

  24. Fuhrmann CM, Konrad CE (2013) A trajectory approach to analyzing the ingredients associated with heavy winter storms in central North Carolina. Weather Forecast 28(3):647–667. doi:10.1175/waf-d-12-00079.1

  25. Guan B, Molotch NP, Waliser DE, Fetzer EJ, Neiman PJ (2010) Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys Res Lett 37(20):L20401. doi:10.1029/2010gl044696

  26. Gustafsson M, Rayner D, and Chen D (2010) Extreme rainfall events in southern Sweden: where does the moisture come from? Tellus A 62(5):605–616. doi:10.1111/j.1600-0870.2010.00456.x

  27. Hondula DM, Sitka L, Davis RE, Knight DB, Gawtry SD, Deaton ML, Lee TR, Normile CP, Stenger PJ (2009) A back-trajectory and air mass climatology for the Northern Shenandoah Valley, USA. Int J Climatol 30(4):569–581. doi:10.1002/joc.1896

  28. Jones MR, Blenkinsop S, Fowler HJ, Kilsby CG (2014) Objective classification of extreme rainfall regions for the UK and updated estimates of trends in regional extreme rainfall. Int J Climatol 34(3):751–765. doi:10.1002/joc.3720

  29. Jorba O, Pérez C, Rocadenbosch F, Baldasano J (2004) Cluster analysis of 4-day back trajectories arriving in the Barcelona Area, Spain, from 1997 to 2002. J Appl Meteorol 43(6):887–901

  30. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

  31. Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

  32. Knippertz P, Wernli H (2010) A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics. J Clim 23(4):987–1003. doi:10.1175/2009jcli3333.1

  33. Kohonen T (1998) The self-organizing map. Neurocomputing 21(1–3):1–6

  34. Krichak SO, Barkan J, Breitgand JS, Gualdi S, and Feldstein SB (2014) The role of the export of tropical moisture into midlatitudes for extreme precipitation events in the Mediterranean region. Theor Appl Climatol 121(3–4):499–515. doi:10.1007/s00704-014-1244-6

  35. Kunkel KE (2003) North American trends in extreme precipitation. Nat Hazards 29:291–305

  36. Kunkel KE, Andsager K (1999) Long-term trends in extreme precipitation events over the conterminous United States and Canada. J Clim 12:2515–2572

  37. Li X, Zhou W, and Chen YD (2016) Detecting the origins of moisture over southeast China: Seasonal variation and heavy rainfall. Adv Atmos Sci 33(3):319–329. doi:10.1007/s00376-015-4197-5

  38. Milrad SM, Atallah EH, Gyakum JR (2010) A diagnostic examination of consecutive extreme cool-season precipitation events at St. John’s, Newfoundland, in December 2008. Weather Forecast 25(4):997–1026. doi:10.1175/2010waf2222371.1

  39. Milrad SM, Atallah EH, Gyakum JR (2013) Precipitation modulation by the Saint Lawrence River Valley in association with transitioning tropical cyclones. Weather Forcast 28:331–352. doi:10.1175/WAF-D-12-00071.1

  40. Milrad SM, Gyakum JR, Atallah EH (2015) A meteorological analysis of the 2013 Alberta flood: antecedent large-scale flow pattern and synoptic–dynamic characteristics. Mon Weather Rev 143(7):2817–2841. doi:10.1175/mwr-d-14-00236.1

  41. Naveau P, Guillou A, Cooley D, Diebolt J (2009) Modelling pairwise dependence of maxima in space. Biometrika 96(1):1–17. doi:10.1093/biomet/asp001

  42. Neiman PJ, Ralph FM, Moore BJ, Hughes M, Mahoney KM, Cordeira JM, Dettinger MD (2013) The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: observed synoptic-scale, orographic, and hydrometeorological characteristics. J Hydrometeorol 14(2):460–484. doi:10.1175/jhm-d-12-0101.1

  43. Newton B, and Burrell BC (2016) The April–May 2008 flood event in the Saint John River Basin: causes, assessment and damages. Can Water Resour J 41(1–2):118–128. doi:10.1080/07011784.2015.1009950

  44. Pfahl S, Madonna E, Boettcher M, Joos H, Wernli H (2014) Warm Conveyor belts in the ERA-Interim dataset (1979–2010). Part II: moisture origin and relevance for precipitation. J Clim 27(1):27–40. doi:10.1175/jcli-d-13-00223.1

  45. Pomeroy JW, Stewart RE, Whitfield PH (2016) The 2013 flood event in the South Saskatchewan and Elk River basins: causes, assessment and damages. Can Water Resour J 41(1–2):105–117. doi:10.1080/07011784.2015.1089190

  46. Raddatz RL (2000) Summer rainfall recycling for an agricultural region of the Canadian prairies. Can J Soil Sci 80(2):367–373. doi:10.4141/S99-016

  47. Raddatz RL (2005) Moisture recycling on the Canadian Prairies for summer droughts and pluvials from 1997 to 2003. Agric Forest Meteorol 131(1–2):13–26. doi:10.1016/j.agrformet.2005.04.007

  48. Radić V, Cannon AJ, Menounos B, Gi N (2015) Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. J Geophys Res Atmos 120(18):9279–9302. doi:10.1002/2015jd023279

  49. Ralph FM, Dettinger MD (2012) Historical and national perspectives on extreme west coast precipitation associated with atmospheric rivers during December 2010. Bull Am Meteorol Soc 93(6):783–790. doi:10.1175/bams-d-11-00188.1

  50. Ramos AM, Sprenger M, Wernli H, Durãn-Quesada AM, Lorenzo MN, Gimeno L (2014) A new circulation type classification based upon Lagrangian air trajectories. Front Earth Sci. doi:10.3389/feart.2014.00029

  51. Roberge A, Gyakum JR, Atallah EH (2009) Analysis of intense poleward water vapor transports into high latitudes of Western North America. Weather Forecast 24(6):1732–1747. doi:10.1175/2009waf2222198.1

  52. Saad C, St-Hilaire A, Gachon P, El Adlouni S (2016) The 2011 flood event in the Richelieu River basin: causes, assessment and damages. Can Water Resour J 41(1–2):129–138. doi:10.1080/07011784.2014.999825

  53. Sheridan S, Lee C (2011) The self-organizing map in synoptic climatological research. Prog Phys Geogr 35(1):109–119, doi:10.1177/0309133310397582

  54. Smirnov VV, Moore GWK (2001) Short-term and seasonal variability of the atmospheric water vapor transport through the Mackenzie River Basin. J Hydrometeorol 2(5):441–452

  55. Spry CM, Kohfeld KE, Allen DM, Dunkley D, Lertzman K (2014) Characterizing Pineapple Express storms in the Lower Mainland of British Columbia, Canada. Can Water Resour J 39(3):302–323. doi:10.1080/07011784.2014.942574

  56. Stadnyk T, Dow K, Wazney L, Blais E-L (2016) The 2011 flood event in the Red River Basin: causes, assessment and damages. Can Water Resour J 41(1–2):65–73. doi:10.1080/07011784.2015.1008048

  57. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96(12):2059–2077. doi:10.1175/bams-d-14-00110.1

  58. Szeto KK (2002) Moisture recycling over the Mackenzie basin. Atmos Ocean 40(2):181–197. doi:10.3137/ao.400207

  59. Tan X, Gan TY (2016) Non-stationary analysis of the frequency and intensity of heavy precipitation over Canada and their relations to large-scale climate patterns. Clim Dyn. doi:10.1007/s00382-016-3246-9

  60. Tan X, Gan T, Shao D (2016) Wavelet analysis of precipitation extremes over Canadian ecoregions and teleconnections to large-scale climate anomalies. J Geophys Res Atmos 121(24):14469–14486. doi:10.1002/2016jd025533

  61. Tošić I, Unkašević M (2012) Extreme daily precipitation in Belgrade and their links with the prevailing directions of the air trajectories. Theor Appl Climatol 111(1–2):97–107. doi:10.1007/s00704-012-0647-5

  62. Trenberth KE (1998) Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Clim Chang 39(4):667–694. doi:10.1023/A:1005319109110

  63. Vincent LA, Mekis É (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the Twentieth Century. Atmos Ocean 44(2):177–193. doi:10.3137/ao.440205

  64. Vincent LA, Zhang X, Brown RD, Feng Y, Mekis E, Milewska EJ, Wan H, Wang XL (2015) Observed trends in Canada’s climate and influence of low-frequency variability modes. J Clim 28(11):4545–4560. doi:10.1175/jcli-d-14-00697.1

  65. Wazney L, Clark SP (2016) The 2009 flood event in the Red River Basin: causes, assessment and damages. Can Water Resour J 41(1–2):56–64. doi:10.1080/07011784.2015.1009949

  66. Wehrens R, Buydens LMC (2007) Self- and super-organizing maps in R: the kohonen package. J Syst Softw 21(5). http://www.jstatsoft.org/v21/i05

  67. Zhang X, Hogg WD, Mekis É (2001) Spatial and temporal characteristics of heavy precipitation events over Canada. J Clim 14(9):1923–1936

Download references

Acknowledgements

The first author was partly funded by the China Scholarship Council (CSC) of People’s Republic of China and the University of Alberta. We are grateful to Éva Mekis from the Climate Research Division of Environment Canada and Climate Change for providing the Canadian precipitation data used in this study and Cameron Bracken for his R code to regionalizing extreme precipitation over Canada. All analysis and plotting was conducted using the R language. The SOM algorithm is implemented in the “kohonen” package (Wehrens and Buydens 2007). The NCEP/NCAR reanalysis meteorological data for driving HYSPLIT model were downloaded from http://ready.arl.noaa.gov/archives.php. The authors further thank two anonymous reviewers for their helpful comments on the manuscript.

Author information

Correspondence to Thian Yew Gan.

Appendix: F-madogram

Appendix: F-madogram

Given N samples of bivariate extremal data \({(M_i^n,M_j^n)^N}\) from two locations i and j, the non-parametric estimator for the F-madogram is (Bernard et al. 2013),

$${\widehat d_{ij}} = \frac{1}{{2N}}\sum\limits_{n = 1}^N {\left| {{{\widehat F}_i}\left( {M_i^n} \right) - {{\widehat F}_j}\left( {M_j^n} \right)} \right|} ,$$
(1)

where

$${\widehat F_i}\left( u \right) = \frac{1}{N}\sum\limits_{n = 1}^N {{1_{\left\{ {M_i^n \leqslant u} \right\}}}} ,$$
(2)

where \({1_{\{ M_i^n \leqslant u\} }}\) is the indicator function for the event \(\left\{ {M_i^n \leqslant u} \right\}\) which returns 1 if the statement if true or 0 otherwise. The entire function returns a proportion of the number of data points that are less than or equal to a given value u (the empirical cumulative distribution function). The F-madogram does not depend on the magnitude of extreme events and provides a dimensionless metric that compares the shape of the extreme value distributions between two stations. Coupled with the PAM algorithm, the F-madogram provides an efficient and theoretically sound method for clustering extremal data.

To avoid misclassifying stations from geographically disparate and remote regions into the same clusters, Bracken et al. (2015) proposed an extension to the F-madogram-based PAM algorithm that also incorporates physical proximity of stations. The extension involves computing a modified version of the F-madogram

$${\widehat {\widehat d}_{ij}} = {\widehat d_{ij}} + {p_{ij}},$$
(3)

where

$${p_{ij}} = \frac{{{q_{ij}}}}{{\sum\nolimits_{n = 1}^N {{q_{ij}}} }}\mathop {\max }\limits_{ij} {\widehat d_{ij}}\quad {\text{and}}\quad {q_{ij}} = \sqrt {{{\left( {{x_i} - {x_j}} \right)}^2} + {{\left( {{y_i} - {y_j}} \right)}^2}} .$$
(4)

The computation of p ij is simply the scaled Euclidian distance between locations of stations such that they will never exceed the largest value of the original F-madogram. The Euclidian distance formula, q ij in which x and y are the geographic coordinates for two locations, may be replaced with the Haversine distance formula if the original data are not projected.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Gan, T.Y. & Chen, Y.D. Moisture sources and pathways associated with the spatial variability of seasonal extreme precipitation over Canada. Clim Dyn 50, 629–640 (2018). https://doi.org/10.1007/s00382-017-3630-0

Download citation

Keywords

  • Seasonal extreme precipitation
  • Back-trajectory analyses
  • Moisture sources
  • Moisture pathways
  • Regionalization