Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM

  • Alan M. Rhoades
  • Paul A. Ullrich
  • Colin M. Zarzycki
Article

Abstract

Climate change will impact western USA water supplies by shifting precipitation from snow to rain and driving snowmelt earlier in the season. However, changes at the regional-to-mountain scale is still a major topic of interest. This study addresses the impacts of climate change on mountain snowpack by assessing historical and projected variable-resolution (VR) climate simulations in the community earth system model (VR-CESM) forced by prescribed sea-surface temperatures along with widely used regional downscaling techniques, the coupled model intercomparison projects phase 5 bias corrected and statistically downscaled (CMIP5-BCSD) and the North American regional climate change assessment program (NARCCAP). The multi-model RCP8.5 scenario analysis of winter season SWE for western USA mountains indicates by 2040-2065 mean SWE could decrease −19% (NARCCAP) to −38% (VR-CESM), with an ensemble median change of −27%. Contrary to CMIP5-BCSD and NARCCAP, VR-CESM highlights a more pessimistic outcome for western USA mountain snowpack in latter-parts of the 21st century. This is related to temperature changes altering the snow-albedo feedback, snowpack storage, and precipitation phase, but may indicate that VR-CESM resolves more physically consistent elevational effects lacking in statistically downscaled datasets and teleconnections that are not captured in limited area models. Overall, VR-CESM projects by 2075–2100 that average western USA mountain snowfall decreases by −30%, snow cover by −44%, SWE by −69%, and average surface temperature increase of +5.0 \(^\circ\)C. This places pressure on western USA states to preemptively invest in climate adaptation measures such as alternative water storage, water use efficiency, and reassess reservoir storage operations.

Keywords

Climate change Western USA Mountain snowpack Regional climate modeling Variable-resolution climate modeling Elevation-dependent warming 

Notes

Acknowledgements

The authors would like to acknowledge Cecile Hannay for her help in ensuring that our RCP8.5 configuration within CESM was consistent with NCAR standards. We would also like to acknowledge the computational support, and patience, provided by the University of California, Davis Farm Cluster IT support team (i.e., Bill Broadley and Terri Knight). Further, we would like to thank our various research sponsors including: the National Science Foundation (NSF) via the Climate Change, Water, and Society Integrated Graduate Education and Research Traineeship (IGERT) program at the University of California, Davis (NSF Award Number: 1069333), the Leland Roy Saxon and Georgia Wood Saxon Fellowship, the “Multiscale Methods for Accurate, Efficient, and Scale-aware Models of the Earth System” within the Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy Earth System Modeling Program (ESM) under Contract No. DE-AC02-05CH11231. Support also comes from the California Agricultural Experiment Station (project CA-D-LAW-2203-H).

References

  1. Anderson EA (1976) A point of energy and mass balance model of snow cover. NOAA Tech Rep NWS 19:1–150Google Scholar
  2. Ashfaq M, Ghosh S, Kao SC, Bowling LC, Mote P, Touma D, Rauscher SA, Diffenbaugh NS (2013) Near-term acceleration of hydroclimatic change in the western US. J Geophys Res Atmos 118(19):10–676. doi: 10.1002/jgrd.50816 CrossRefGoogle Scholar
  3. Bacmeister JT, Wehner MF, Neale RB, Gettelman A, Hannay C, Lauritzen PH, Caron JM, Truesdale JE (2014) Exploratory high-resolution climate simulations using the community atmosphere model (CAM). J Clim 27(9):3073–3099. doi: 10.1175/JCLI-D-13-00387.1 CrossRefGoogle Scholar
  4. Bales RC, Molotch NP, Painter TH, Dettinger MD, Rice R, Dozier J (2006) Mountain hydrology of the western US. Water Resour Res 42(W08):432. doi: 10.1029/2005WR004387 Google Scholar
  5. Bales RC, Rice R, Roy SB (2014) Estimated loss of snowpack storage in the Eastern Sierra Nevada with climate warming. J Water Resour Plan Manag 141(2):04014055. doi: 10.1061/(ASCE)WR.1943-5452.0000453 CrossRefGoogle Scholar
  6. Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA et al (2008) Human-induced changes in the hydrology of the western US. Science 319(5866):1080–1083. doi: 10.1126/science.1152538 CrossRefGoogle Scholar
  7. Bartos MD, Chester MV (2015) Impacts of climate change on electric power supply in the Western US. Nat Clim Change. doi: 10.1038/nclimate2648
  8. Belmecheri S, Babst F, Wahl ER, Stahle DW, Trouet V (2016) Multi-century evaluation of Sierra Nevada snowpack. Nat Clim Change 6(1):2–3. doi: 10.1038/nclimate2809 CrossRefGoogle Scholar
  9. Berg N, Hall A, Sun F, Capps S, Walton D, Langenbrunner B, Neelin D (2015) Twenty-first-century precipitation changes over the Los Angeles region. J Clim 28(2):401–421. doi: 10.1175/JCLI-D-14-00316.1 CrossRefGoogle Scholar
  10. Berghuijs W, Woods R, Hrachowitz M (2014) A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat Clim Change 4(7):583–586. doi: 10.1038/nclimate2246 CrossRefGoogle Scholar
  11. Brekke L, Thrasher B, Maurer E, Pruitt T (2013) Downscaled CMIP3 and CMIP5 climate and hydrology projections: release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs. US Dept of the Interior, Bureau of Reclamation, Technical Services Center, DenverGoogle Scholar
  12. Cai X, Yang ZL, Xia Y, Huang M, Wei H, Leung LR, Ek MB (2014) Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. J Geophys Res Atmos 119(24):13–751. doi: 10.1002/2014JD022113 CrossRefGoogle Scholar
  13. Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28(17):6938–6959. doi: 10.1175/JCLI-D-14-00754.1 CrossRefGoogle Scholar
  14. Cayan DR (1996) Interannual climate variability and snowpack in the western US. J Clim 9:928–948. doi: 10.1175/1520-0442(1996) 009<0928:ICVASI>2.0.CO;2 CrossRefGoogle Scholar
  15. Cayan DR, Redmond KT, Riddle LG (1999) ENSO and hydrologic extremes in the Western US. J Clim 12:2881–2893. doi: 10.1175/1520-0442(1999) 012<2881:EAHEIT>2.0.CO;2 CrossRefGoogle Scholar
  16. Chen F, Liu C, Dudhia J, Chen M (2014a) A sensitivity study of high-resolution regional climate simulations to three land surface models over the western United States. J Geophys Res Atmos 119(12):7271–7291. doi: 10.1002/2014JD021827 CrossRefGoogle Scholar
  17. Chen J, Brissette FP, Leconte R (2014b) Assessing regression-based statistical approaches for downscaling precipitation over North America. Hydrol Process 28(9):3482–3504. doi: 10.1002/hyp.9889 CrossRefGoogle Scholar
  18. Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28(15):2031–2064. doi: 10.1002/joc.1688 CrossRefGoogle Scholar
  19. DeFlorio MJ, Pierce DW, Cayan DR, Miller AJ (2013) Western US extreme precipitation events and their relation to ENSO and PDO in CCSM4. J Clim 26(12):4231–4243. doi: 10.1175/JCLI-D-12-00257.1 CrossRefGoogle Scholar
  20. Dennis J, Edwards J, Evans KJ, Guba O, Lauritzen PH, Mirin AA, Str-Cyr A, Taylor MA, Worley PH (2011) CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int J High Perfor Comput Appl:74–89. doi: 10.1177/1094342011428142
  21. Dettinger MD, Cayan DR (1995) Large-scale atmospheric forcing of recent trends toward early snowmelt runoff in California. J Clim 8:606–623. doi: 10.1175/1520-0442(1995) 008<0606:LSAFOR>2.0.CO;2 CrossRefGoogle Scholar
  22. Diffenbaugh NS, Scherer M, Ashfaq M (2013) Response of snow-dependent hydrologic extremes to continued global warming. Nat Clim Change 3(4):379–384. doi: 10.1038/nclimate1732 CrossRefGoogle Scholar
  23. Field CB, Barros VR, Mastrandrea M, Mach KJ, Abdrabo MK, Adger N, Anokhin Y, Anisimov O, Arent D, Barnett J, et al. (2014) Summary for policymakers. Climate change 2014: impacts, adaptation, and vulnerability Part A: Global and Sectoral Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp 1–32. https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf
  24. Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73(12):1962–1970. doi: 10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2 CrossRefGoogle Scholar
  25. Ghan SJ, Liu X, Easter RC, Zaveri R, Rasch PJ, Yoon JH, Eaton B (2012) Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J Clim 25(19):6461–6476. doi: 10.1175/JCLI-D-11-00650.1 CrossRefGoogle Scholar
  26. Glantz MH, Katz RW, Nicholls N (1991) Teleconnections linking worldwide climate anomalies. Cambridge University Press, CambridgeGoogle Scholar
  27. Group MRIEW (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5(5):424–430. doi: 10.1038/nclimate2563 CrossRefGoogle Scholar
  28. Groves DG, Yates D, Tebaldi C (2008) Developing and applying uncertain global climate change projections for regional water management planning. Water Resour Res 44(12): doi: 10.1029/2008WR006964
  29. Hall A (2004) The role of surface albedo feedback in climate. J Clim 17(7):1550–1568. doi: 10.1175/1520-0442(2004) 017<1550:TROSAF>2.0.CO;2 CrossRefGoogle Scholar
  30. Hanak E, Lund J, Dinar A, Gray B, Howitt R, Mount J, Moyle P, Thompson B (2011) Managing Californias water from conflict to reconciliation. Public Policy Institute of California (PPIC). http://www.ppic.org/content/pubs/report/R_211EHR.pdf
  31. Harris LM, Lin SJ (2013) A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon Weather Rev 141(1):283–306. doi: 10.1175/MWR-D-11-00201.1 CrossRefGoogle Scholar
  32. Harris LM, Lin SJ, Tu C (2016) High-resolution climate simulations using GFDL HiRAM with a stretched global grid. J Clim 29(11):4293–4314. doi: 10.1175/JCLI-D-15-0389.1 CrossRefGoogle Scholar
  33. Henn B, Clark M, Kavetski D, Newman A, Hughes M, McGurk B, Lundquist J (2016) Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range. J Hydrol. doi: 10.1016/j.jhydrol.2016.08.009
  34. Huang X, Ullrich PA (2016) Irrigation impacts on California’s climate with the variable-resolution CESM. J Adv Model Earth Syst. doi: 10.1002/2016MS000656
  35. Huang X, Rhoades AM, Ullrich PA, Zarzycki CM (2016) An evaluation of the variable-resolution CESM for modeling California’s climate. J Adv Model Earth Syst 8:345–369. doi: 10.1002/2015MS000559 CrossRefGoogle Scholar
  36. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21(19):5145–5153. doi: 10.1175/2008JCLI2292.1 CrossRefGoogle Scholar
  37. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res Atmos 113(D13). doi: 10.1029/2008JD009944
  38. Kinter JL, Cash B, Achuthavarier D, Adams J, Altshuler E, Dirmeyer P, Doty B, Huang B, Jin EK, Marx L, Manganello J, Stan C, Wakefield T, Palmer T, Hamrud M, Jung T, Miller M, Towers P, Wedi N, Satoh M, Tomita H, Kodama C, Nasuno T, Oouchi K, Yamada Y, Taniguchi H, Andrews P, Baer T, Ezell M, Halloy C, John D, Loftis B, Mohr R, Wong K (2013) Revolutionizing climate modeling with project athena: a multi-institutional international collaboration.  Bull Am Meteorol Soc 94(2):231–245. doi: 10.1175/BAMS-D-11-00043.1 CrossRefGoogle Scholar
  39. Jordan R (1991) A one-dimensional temperature model for a snow cover: technical documentation for SNTHERM. 89. Tech. Rep., DTIC DocumentGoogle Scholar
  40. Kapnick S, Hall A (2012) Causes of recent changes in western North American snowpack. Clim Dyn 38:1885–1899. doi: 10.1007/s00382-011-1089-y CrossRefGoogle Scholar
  41. Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM, Bates SC, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque JF, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96(8):1333–1349. doi: 10.1175/BAMS-D-13-00255.1 CrossRefGoogle Scholar
  42. Klos PZ, Link TE, Abatzoglou JT (2014) Extent of the rain-snow transition zone in the western US under historic and projected climate. Geophys Res Lett 41(13):4560–4568. doi: 10.1002/2014GL060500, L060500 CrossRefGoogle Scholar
  43. Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, Yang ZL, Levis S, Sakaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J Adv Model Earth Syst 3. doi: 10.1029/2011MS000045
  44. Li W, Forest CE (2014) Estimating the sensitivity of the atmospheric teleconnection patterns to SST anomalies using a linear statistical method. J Clim 27(24):9065–9081. doi: 10.1175/JCLI-D-14-00231.1 CrossRefGoogle Scholar
  45. Lute AC, Abatzoglou JT, Hegewisch KC (2015) Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resourc Res 51(2):960–972. doi: 10.1002/2014WR016267 CrossRefGoogle Scholar
  46. Margulis SA, Corts G, Girotto M, Durand M (2016a) A Landsat-Era Sierra Nevada snow reanalysis (1985–2015). J Hydrometeorol 17(4):1203–1221. doi: 10.1175/JHM-D-15-0177.1 CrossRefGoogle Scholar
  47. Margulis SA, Corts G, Girotto M, Huning LS, Li D, Durand M (2016b) Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery. Geophys Res Lett:6341–6349. doi: 10.1002/2016GL068520, 2016GL068520
  48. Maurer E, Hidalgo H, Das T, Dettinger M, Cayan D (2010) Assessing climate change impacts on daily streamflow in California: the utility of daily large-scale climate data. Hydrol Earth Syst Sci Discuss 7(1):1209–1243. doi: 10.5194/hess-14-1125-2010 CrossRefGoogle Scholar
  49. Maurer EP, Brekke L, Pruitt T, Duffy PB (2007) Fine-resolution climate projections enhance regional climate change impact studies. Eos Trans Am Geophys Union 88(47):504–504. doi: 10.1029/2007EO470006 CrossRefGoogle Scholar
  50. McCorquodale P, Ullrich PA, Johansen H, Colella P (2015) An adaptive multiblock high-order finite-volume method for solving the shallow-water equations on the sphere. Commun Appl Math Comput Sci 10:121–162. doi: 10.2140/camcos.2015.10.121 CrossRefGoogle Scholar
  51. Mearns LO, Gutowski WJ, Jones R, Leung LY, McGinnis S, Nunes AMB, Qian Y (2009) A regional climate change assessment program for North America. EoS 90(36):311–312. doi: 10.1175/BAMS-D-11-00223.1 CrossRefGoogle Scholar
  52. Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, Caya D Jr, JC, Flory D, Gutowski W, Takle ES, Jones R, Leung R, Moufouma-Okia W, McDaniel L, Nunes AMB, Qian Y, Roads J, Sloan L, Snyder M, (2012) The North American Regional Climate Change Assessment Program: overview of phase I results. Bull Am Meteorol Soc 93(9):1337–1362. doi: 10.1175/BAMS-D-11-00223.1 CrossRefGoogle Scholar
  53. Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S, Biner S, Caya D, Arritt RW, Gutowski W, Takle E, Snyder M, Jones RG, Nunes AMB, Tucker S, Herzmann D, McDaniel L, Sloan L (2013) Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Clim Change 120(4):965–975. doi: 10.1007/s10584-013-0831-3 Google Scholar
  54. Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: description and numerical tests. J Clim 21(15):3642–3659. doi: 10.1175/2008JCLI2105.1 CrossRefGoogle Scholar
  55. Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in western North America. Bull Am Meteorol Soc 86:39–49. doi: 10.1175/BAMS-86-1-39 CrossRefGoogle Scholar
  56. National Climate Assessment (accessed 2016) Southwest. http://nca2014.globalchange.gov/report/regions/southwest
  57. National Geophysical Data Center (2006) 2-minute Gridded Global Relief Data (ETOPO2) v2. National Geophysical Data Center, NOAA. 2014: doi: 10.7289/V5J1012Q
  58. Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21(22):5904–5924. doi: 10.1175/2008JCLI2244.1 CrossRefGoogle Scholar
  59. Neale RB, Chen CC, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque JF, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Cameron-Smith P, Collins WD, Iacono MJ, , Easter RC, Liu X, Ghan SJ, Rasch PJ, Taylor MA (2010) Description of the NCAR community atmosphere model (CAM 5.0). NCAR Technical Note NCAR/TN-486+STR, National Center for Atmospheric Research, Boulder, ColoradoGoogle Scholar
  60. Oleson K, Lawrence D, Bonan G, Flanner M, Kluzek E, Lawrence P, Levis S, Swenson S, Thornton P, Dai A, Decker M, Dickinson R, Feddema J, Heald C, Hoffman F, Lamarque J, Mahowald N, Niu G, Qian T, Randerson J, Running S, Sakaguchi K, Slater A, Stockli R, Wang A, Yang Z, Zeng X, Zeng X (2010) Technical Description of version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, Colorado. doi: 10.5065/D6FB50WZ
  61. Painter TH, Berisford DF, Boardman JW, Bormann KJ, Deems JS, Gehrke F, Hedrick A, Joyce M, Laidlaw R, Marks D, Mattmann C, McGurk B, Ramirez P, Richardson M, Skiles SM, Seidel FC, Winstral A (2016) The airborne snow observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens Environ 184:139–152. doi: 10.1016/j.rse.2016.06.018 CrossRefGoogle Scholar
  62. Palmer PL (1988) The SCS snow survey water supply forecasting program: current operations and future directions. In: Proceedings western snow conference, pp 43–51. http://westernsnowconference.org/sites/westernsnowconference.org/PDFs/1988Palmer.pdf
  63. Pandey GR, Cayan DR, Georgakakos KP (1999) Precipitation structure in the Sierra Nevada of California during winter. J Geophys Res Atmos 104(D10):12019–12030. doi: 10.1029/1999JD900103 CrossRefGoogle Scholar
  64. Park S, Bretherton CS (2009) The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. J Clim 22(12):3449–3469. doi: 10.1175/2008JCLI2557.1 CrossRefGoogle Scholar
  65. Park S, Bretherton CS, Rasch PJ (2014) Integrating cloud processes in the community atmosphere model, Version 5. J Clim 27(18):6821–6856. doi: 10.1175/JCLI-D-14-00087.1 CrossRefGoogle Scholar
  66. Pavelsky TM, Kapnick S, Hall A (2011) Accumulation and melt dynamics of snowpack from a multiresolution regional climate model in the central Sierra Nevada, California. J Geophys Res Atmos:116. doi: 10.1029/2010JD015479
  67. Pavelsky TM, Sobolowski S, Kapnick SB, Barnes JB (2012) Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophys Res Lett:39. doi: 10.1029/2012GL052741
  68. Pierce DW, Cayan DR (2013) The uneven response of different snow measures to human-induced climate warming. J Clim 26:4148–4167. doi: 10.1175/JCLI-D-12-00534.1 CrossRefGoogle Scholar
  69. Pierce DW, Das T, Cayan DR, Maurer EP, Miller NL, Bao Y, Kanamitsu M, Yoshimura K, Snyder MA, Sloan LC et al (2013) Probabilistic estimates of future changes in California temperature and precipitation using statistical and dynamical downscaling. Clim Dyn 40(3–4):839–856. doi: 10.1007/s00382-012-1337-9 CrossRefGoogle Scholar
  70. Pierce DW, Cayan DR, Maurer EP, Abatzoglou JT, Hegewisch KC (2015) Improved bias correction techniques for hydrological simulations of climate change. J Hydrometeorol 16(6):2421–2442. doi: 10.1175/JHM-D-14-0236.1 CrossRefGoogle Scholar
  71. Qu X, Hall A (2014) On the persistent spread in snow-albedo feedback. Clim Dyn 42(1–2):69–81. doi: 10.1007/s00382-013-1774-0 CrossRefGoogle Scholar
  72. Rauscher SA, Ringler TD (2014) Impact of variable-resolution meshes on midlatitude baroclinic eddies using CAM-MPAS-A. Mon Weather Rev 142(11):4256–4268. doi: 10.1175/MWR-D-13-00366.1 CrossRefGoogle Scholar
  73. Rauscher SA, Ringler TD, Skamarock WC, Mirin AA (2013) Exploring a global multiresolution modeling approach using aquaplanet simulations. J Clim 26(8):2432–2452. doi: 10.1175/JCLI-D-12-00154.1 CrossRefGoogle Scholar
  74. Rhoades AM, Huang X, Ullrich PA, Zarzycki CM (2016) Characterizing sierra nevada snowpack using variable-resolution CESM. J Appl Meteorol Climatol 55(1):173–196. doi: 10.1175/JAMC-D-15-0156.1 CrossRefGoogle Scholar
  75. Rupp DE, Mote PW, Bindoff NL, Stott PA, Robinson DA (2013) Detection and attribution of observed changes in Northern Hemisphere spring snow cover. J Clim 26:6904–6914. doi: 10.1175/JCLI-D-12-00563.1 CrossRefGoogle Scholar
  76. Salzmann N, Mearns LO (2012) Assessing the performance of multiple regional climate model simulations for seasonal mountain snow in the upper Colorado River basin. J Hydrometeorol 13(2):539–556. doi: 10.1175/2011JHM1371.1 CrossRefGoogle Scholar
  77. Schulzweida U, Kornblueh L, Quast R (2007) CDO User’s guide–climate data operators. Tech. rep., Max Planck Institute, version 1.0.7, Tech. Rep. http://www.mpimet.mpg.de/fileadmin/software/cdo
  78. Skamarock WC, Klemp JB, Duda MG, Fowler LD, Park SH, Ringler TD (2012) A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon Weather Rev 140:3090–3105. doi: 10.1175/MWR-D-11-00215.1 CrossRefGoogle Scholar
  79. Small RJ, Bacmeister J, Bailey D, Baker A, Bishop S, Bryan F, Caron J, Dennis J, Gent P, Hm Hsu, Jochum M, Lawrence D, Muoz E, diNezio P, Scheitlin T, Tomas R, Tribbia J, Tseng Yh, Vertenstein M (2014a) A new synoptic scale resolving global climate simulation using the community earth system model. J Adv Model Earth Syst 6(4):1065–1094. doi: 10.1002/2014MS000363 CrossRefGoogle Scholar
  80. Small RJ, Bacmeister J, Bailey D, Baker A, Bishop S, Bryan F, Caron J, Dennis J, Gent P, Hm Hsu et al (2014b) A new synoptic scale resolving global climate simulation using the community earth system model. J Adv Model Earth Syst 6(4):1065–1094. doi: 10.1002/2014MS000363 CrossRefGoogle Scholar
  81. Stewart IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Process 23:78–94. doi: 10.1002/hyp.7128 CrossRefGoogle Scholar
  82. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  83. Taylor M, Tribbia J, Iskandarani M (1997) The spectral element method for the shallow water equations on the sphere. J Comput Phys 130:92–108. doi: 10.1006/jcph.1996.5554 CrossRefGoogle Scholar
  84. Taylor MA, Fournier A (2010) A compatible and conservative spectral element method on unstructured grids. J Comput Phys 229(17):5879–5895. doi: 10.1016/j.jcp.2010.04.008 CrossRefGoogle Scholar
  85. Toure AM, Rodell M, Yang ZL, Beaudoing H, Kim E, Zhang Y, Kwon Y (2016) Evaluation of the Snow Simulations from the community land model, version 4 (CLM4). J Hydrometeorol 17(1):153–170. doi: 10.1175/JHM-D-14-0165.1 CrossRefGoogle Scholar
  86. Ullrich (2014) SQuadGen: spherical quadrilateral grid generator. http://climate.ucdavis.edu/squadgen.php
  87. Ullrich PA, Taylor MA (2015) Arbitrary-order conservative and consistent remapping and a theory of linear maps: part I. Mon Weather Rev 143(6):2419–2440. doi: 10.1175/MWR-D-14-00343.1 CrossRefGoogle Scholar
  88. Ullrich PA, Devendran D, Johansen H (2016) Arbitrary-order conservative and consistent remapping and a theory of linear maps, part 2. Mon Weather Rev 144(4):1529–1549. doi: 10.1175/MWR-D-15-0301.1 CrossRefGoogle Scholar
  89. Velázquez JA, Troin M, Caya D, Brissette F (2015) Evaluating the time-invariance hypothesis of climate model bias correction: implications for hydrological impact studies. J Hydrometeorol 16(5):2013–2026. doi: 10.1175/JHM-D-14-0159.1 CrossRefGoogle Scholar
  90. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review 109(4):784–812. doi: 10.1175/1520-0493(1981) 109<0784:TITGHF>2.0.CO;2 CrossRefGoogle Scholar
  91. Wang SY, Hipps L, Gillies RR, Yoon JH (2014) Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys Res Lett 41(9):3220–3226. doi: 10.1002/2014GL059748 CrossRefGoogle Scholar
  92. Wehner MF, Bala G, Duffy P, Mirin AA, Romano R (2010) Towards direct simulation of future tropical cyclone statistics in a high-resolution global atmospheric model. Adv Meteorol 2010:13. doi: 10.1155/2010/915303 CrossRefGoogle Scholar
  93. van der Wiel K, Kapnick SB, Vecchi GA, Cooke WF, Delworth TL, Jia L, Murakami H, Underwood S, Zeng F (2016) The resolution dependence of contiguous US precipitation extremes in response to CO2 forcing. J Clim 29(22):7991–8012. doi: 10.1175/JCLI-D-16-0307.1
  94. Wise EK (2012) Hydroclimatology of the US intermountain west. Progr Phys Geogr 36:458–479. doi: 10.1177/0309133312446538 CrossRefGoogle Scholar
  95. Xia Y, Mitchell K, Ek M, Cosgrove B, Sheffield J, Luo L, Alonge C, Wei H, Meng J, Livneh B, et al. (2012a) Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J Geophys Res Atmos 117(D3). doi: 10.1029/2011JD016051
  96. Xia Y, Mitchell K, Ek M, Sheffield J, Cosgrove B, Wood E, Luo L, Alonge C, Wei H, Meng J, et al. (2012b) Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J Geophys Res Atmos 117(D3). doi: 10.1029/2011JD016048
  97. Yongjiu D, Qingcun Z (1997) A land surface model (IAP94) for climate studies part I: formulation and validation in off-line experiments. Adv Atmos Sci 14:433–460. doi: 10.1007/s00376-997-0063-4 CrossRefGoogle Scholar
  98. Zarzycki CM, Jablonowski C (2014) A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J Adv Model Earth Syst 6(3):805–828. doi: 10.1002/2014MS000352 CrossRefGoogle Scholar
  99. Zarzycki CM, Jablonowski C, Taylor MA (2014a) Using variable resolution meshes to model tropical cyclones in the community atmosphere model. Mon Weather Rev 142(3):1221–1239. doi: 10.1175/MWR-D-13-00179.1 CrossRefGoogle Scholar
  100. Zarzycki CM, Levy MN, Jablonowski C, Overfelt JR, Taylor MA, Ullrich PA (2014b) Aquaplanet experiments using CAM’s variable-resolution dynamical core. J Clim 27:5481–5503. doi: 10.1175/JCLI-D-14-00004.1 CrossRefGoogle Scholar
  101. Zarzycki CM, Jablonowski C, Thatcher DR, Taylor MA (2015) Effects of localized grid refinement on the general circulation and climatology in the community atmosphere model. J Clim 28(7):2777–2803. doi: 10.1175/JCLI-D-14-00599.1 CrossRefGoogle Scholar
  102. Zender CS (2008) Analysis of self-describing gridded geoscience data with netCDF operators (NCO). Environ Model Softw 23(10):1338–1342. doi: 10.1016/j.envsoft.2008.03.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Land, Air, and Water Resources (LAWR)University of California, DavisDavisUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations