Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations

  • J. Kim
  • B. Guan
  • D. E. Waliser
  • R. D. Ferraro
  • J. L. Case
  • T. Iguchi
  • E. Kemp
  • W. Putman
  • W. Wang
  • D. Wu
  • B. Tian
Article

Abstract

Winter precipitation (PR) characteristics in western United States (WUS) related to atmospheric river (AR) landfalls are examined using the observation-based PRISM data. The observed AR-related precipitation characteristics are in turn used to evaluate model precipitation data from the NASA MERRA2 reanalysis and from seven dynamical downscaling simulations driven by the MERRA2. Multiple metrics including mean bias, Taylor diagram, and two skill scores are used to measure model performance for three climatological sub-regions in WUS, Pacific Northwest (PNW), Pacific Southwest (PSW) and Great Basin (GB). All model data well represent the winter-mean PR with spatial pattern correlations of 0.8 or higher with PRISM for the three sub-regions. Higher spatial resolutions and/or the use of spectral nudging generally yield higher skill scores in simulating the geographical distribution of PR for the entire winter. The PRISM data shows that the AR-related fraction of winter PR and associated daily PR PDFs in each region vary strongly for landfall locations; AR landfalls in the northern WUS coast (NC) affect mostly PNW while those in the southern WUS coast (SC) affect both PSW and GB. NC (SC) landfalls increase the frequency of heavy PR in PNW (PSW and GB) but reduce it in PSW (PNW). All model data reasonably represent these observed variations in the AR-related winter PR fractions and the daily PR PDFs according to AR landfall locations. However, unlike for the entire winter period, no systematic effects of resolution and/or spectral nudging are identified in these AR-related PR characteristics. Dynamical downscaling in this study generally yield positive added values to the MERRA2 PR in the AR-related PR fraction for most sub-regions and landfall locations, most noticeably for PSW by NU-WRF. The downscaling also generate positive added value in p95 for PNW, but negative values for PSW and GB due to overestimation of heavy precipitation events.

References

  1. Bacmeister JT, Suarez MJ, Robertson FR (2006) Rain re-evaporation, boundary-layer/convection interactions and Pacific rainfall patterns in an AGCM. J Atmos Sci 8:3383–3403CrossRefGoogle Scholar
  2. Boville B (1991) Sensitivity of simulated climate to model resolution. J Climate 4:469–485CrossRefGoogle Scholar
  3. Bukovsky MS, Gochis DJ, Mearns LO (2013) Towards assessing NARCCAP regional climate model credibility for the North American monsoon: current climate simulations. J Clim. doi:10.1175/JCLI-D-12-00538.s1 Google Scholar
  4. Carvalho A, Ferreira J, Arreola J, Carvalho AC, Miranda A, Alonso S, Berrego C (2002) Sensitivity tests of MM5 modelling system over a coastal region in Portugal. In: Breddia, Duque M (eds) Air Pollution X. WIT Press, Ashurst Lodge, pp 503–512. ISBN 1-85312-916-XGoogle Scholar
  5. Carvalho D, Rocha A, Gomez-Gesteira M, Santos C (2012) A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environ Model Softw 33:23–34CrossRefGoogle Scholar
  6. Castro C, Pielke R Sr, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the Regional Atmospheric Modeling System (RAMS). J Geophys Res 110:D05108. doi:10.1029/2004/2004JD004721 CrossRefGoogle Scholar
  7. Cha D-H, Jin C-S, Moon J-H, Lee D-K (2016) Improvement of regional climate model simulation of East Asian summer monsoon by coupled air-sea interaction and large-scale nudging. Int J Climatol 36:334–345CrossRefGoogle Scholar
  8. Chou M-D, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Memo 104606:85Google Scholar
  9. Chou M-D, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, 15Google Scholar
  10. Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158CrossRefGoogle Scholar
  11. Daly C, Halbleib M, Smith JJ, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol. doi:10.1002/joc0.1688 Google Scholar
  12. Dettinger M (2011) Climate change, atmospheric rivers, and floods in California—a multi-model analysis of storm frequency and magnitude change. J Am Water Resour Assoc 47:514–523CrossRefGoogle Scholar
  13. Dettinger M, Ralph FM, Das T, Neiman PJ, Cayan D (2011) Atmospheric rivers, floods, and the water resources of California. Water 3:445–478. doi:10.3390/w3020445 CrossRefGoogle Scholar
  14. Di Luca A, de Elia R, Laprise R (2011) Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Clim Dyn 1:1–19Google Scholar
  15. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J Geophys Res 108:8851CrossRefGoogle Scholar
  16. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models and add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92:1181–1192CrossRefGoogle Scholar
  17. Garcia-Diez M, Fernández J, San-Martin D, Herrera S, Gutiérrez J (2015) Assessing and improving the local added value of WRF for wind downscaling. J Appl Meteorol Clim 54:1556–1568CrossRefGoogle Scholar
  18. Giorgi F, Gutowski W Jr (2015) Regional dynamical downscaling and CORDEX initiative. Annu Rev Environ Resour 40:467–490. doi:10.1146/annurev-environ-102014-021217 CrossRefGoogle Scholar
  19. Grell G, Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett. doi:10.1029/2002GL015311
  20. Guan B, Waliser DE (2015) Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J Geophys Res Atmos 120:12514­12535. doi:10.1002/2015JD024257 Google Scholar
  21. Guan B, Molotch N, Waliser D, Fetzer E, Neiman P (2010) Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys Res Lett. doi:10.1029/2010GL044696
  22. Guan B, Waliser DE, Ralph FM, Fetzer EJ, Neiman PJ (2016) Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys Res Lett. doi:10.1002/2016GL067978 Google Scholar
  23. Iguchi T, Tao W, Wu D, Peters-Lidard C, Santanello JA Jr, Kemp E, Tian Y, Case J, Wang W, Ferraro R, Waliser D, Kim J, Lee H, Guan B, Tian B, Loikith P (2016) Sensitivity of CONUS summer rainfall to the selection of cumulus parameterization scheme in NU-WRF climate simulations. J Hydrometeorol (under revision) Google Scholar
  24. Janjić ZI (2002) Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note, No. 437Google Scholar
  25. Kabela E, Carbone G (2015) NARCCAP model skill and bias for the southwest United States. Am J Clim Change 4:94–114CrossRefGoogle Scholar
  26. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  27. Kang H, Cha D, Lee D (2005) Evaluation of the MM5/LSM coupled model for East Asian summer monsoon simulations. J Geophys Res 110:D10105. doi:10.1029/2004jd005266 CrossRefGoogle Scholar
  28. Kim J (1997) Precipitation and snow budget over the southwestern United States during the 1994–1995 winter season in a mesoscale model simulation. Water Resour Res 33:2831–2839CrossRefGoogle Scholar
  29. Kim J, Kang H (2007) The impacts of the Sierra Nevada on low-level wind and water vapor transport. J Hydrometeorol 8:790–804CrossRefGoogle Scholar
  30. Kim J, Lee J-E (2003) A multi-year regional climate hindcast for the western United States using the Mesoscale Atmospheric Simulation model. J Hydrometeorol 4:878–890CrossRefGoogle Scholar
  31. Kim J, Park S (2016) Uncertainties in calculating precipitation climatology in East Asia. Hydrol Earth Syst Sci 20:651–658CrossRefGoogle Scholar
  32. Kim J, Miller N, Guetter A, Georgakakos K (1998) River flow response to precipitation and snow budget in California during the 1994/95 winter. J Clim 11:2376–2386CrossRefGoogle Scholar
  33. Kim J, Miller N, Farrara J, Hong S (2000) A seasonal precipitation and streamflow hindcast and prediction study in the western United States during the 1997/98 winter season using a dynamical downscaling system. J Hydrometeorol 1:311–329CrossRefGoogle Scholar
  34. Kim J, Waliser DE, Neiman PJ, Guan B, Ryoo J-M, Wick GA (2013a) Effects of atmospheric river landfalls on the cold season precipitation in California. Clim Dyn 40:465–474CrossRefGoogle Scholar
  35. Kim J, Waliser DE, Mattmann CA, Mearns LO, Goodale CE, Hart AF, Crichton DJ, McGinnis S, Lee H, Loikith PC, Boustani M (2013b) Evaluation of the surface climatology over the conterminous United States in the North American Regional Climate Change Assessment Program hindcast experiment using a Regional Climate Model Evaluation System. J Clim 26:5698–5715CrossRefGoogle Scholar
  36. Kim J, Sanjay J, Mattmann C, Boustani M, M.V.S. Ramarao, Krishnan R, Waliser D (2015) Uncertainties in estimating spatial and interannual variations in precipitation climatology in the India-Tibet region from multiple gridded precipitation datasets. Int J Climatol 35:4557–4573CrossRefGoogle Scholar
  37. Koster RD, Suarez MJ, Ducharne A, Stieglitz M, Kumar P (2000) A catchment-based approach to modeling land surface processes in a GCM, Part 1, Model structure. J Geophys Res 105:24809–24822CrossRefGoogle Scholar
  38. Leung R, Ghan S (1998) Parameterizing subgrid orographic precipitation and surface cover in climate models. Mon Weather Rev 126:3271–3291CrossRefGoogle Scholar
  39. Leung R, Qian Y (2009) Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys Res Lett 36:L03820. doi:10.1029/2008GL036445 CrossRefGoogle Scholar
  40. Lock AP, Brown AR, Bush MR, Martin GM, R.N.B. Smith (2000) A new boundary layer mixing scheme. Part I: scheme description and single-column model tests. Mon Weather Rev 138:3187–3199CrossRefGoogle Scholar
  41. Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S, Biner S, Caya D, Arritt RW, Gutowski W, Takle E, Snyder M, Jones RG, A.M.B. Nunes, Tucker S, Herzmann D, McDaniel L, Sloan L (2013) Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Clim Change 120:965–975CrossRefGoogle Scholar
  42. Miller N, Kim J (1996) Numerical prediction of precipitation and river flow over the Russian River watershed during the January 1995 California storms. Bull Am Meteorol Soc 77:101–105CrossRefGoogle Scholar
  43. Mohan M, Bhati S (2011) Analysis of WRF model performance over subtropical region of Delhi, India. Adv Meteorol 2011:Article ID 621235. doi:10.1155/2011/621235
  44. Molod A, Takacs L, Suarez M, Bacmeister J, Song I-S, Eichmann A (2012) The GEOS-5 atmospheric general circulation model: mean climate and development from MERRA to Fortuna. NASA/TM-2012-104606, 28Google Scholar
  45. Moorthi S, Suarez MJ (1992) Relaxed Arakawa Schubert: a parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002CrossRefGoogle Scholar
  46. Neiman PJ, Ralph FM, White AB, Kingsmill DE, Persson P (2002) The statistical relationship between upslope flow and rainfall in California’s coastal mountains: observations during CALJET. Mon Weather Rev 130:1468–1492CrossRefGoogle Scholar
  47. Neiman PJ, Ralph FM, Wick GA, Kuo Y, Lee T, Taylor GH, Dettinger MD (2008) Diagnosis of an intense atmospheric river impacting the Pacific Northwest: storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon Weather Rev 136:4398–4420CrossRefGoogle Scholar
  48. Perkins S, Pitman A, Holbrook N, McAneney J (2008) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probably density functions. J Clim 20:4356–4376CrossRefGoogle Scholar
  49. Peters-Lidard CD, Kemp EM, Matsui T, Santanello JA, Kumar SV, Kumar, Jacob JP, Clune T, Tao W-K, Chin M, Hou A, Case JL, Kim D, Kim K-M, Lau W, Liu Y, Shi J-J, Starr D, Tan Q, Tao Z, Zaitchik BF, Zavodsky B, Zhang SQ, Zupanski M (2015) Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environ Model Softw 67:149–159CrossRefGoogle Scholar
  50. Rachel P, Shindell D, Faluvegi G (2012) The added value to global model projections of climate change by dynamical downscaling: a case study over the continental U.S. using the GISS-ModelE2 and WRF models. J Geophys Res 117:D20118. doi:10.1029/2012jd018091 Google Scholar
  51. Reichle RH, Liu Q (2014) Observation corrected precipitation estimates in GEOS5. In: Koster RD (ed) Technical report series on global modeling and data assimilation, vol 35, pp 1–18Google Scholar
  52. Schwaller MR, Morris KR (2011) A ground validation network for the global precipitation measurement mission. J Atmos Ocean Technol 28:301–319CrossRefGoogle Scholar
  53. Soong S, Kim J (1996) Simulation of a heavy wintertime precipitation event in California. Clim Change 32:55–77CrossRefGoogle Scholar
  54. Stoklosa J, Daly C, Foster S, Ashcroft M, Warton D (2015) A climate of uncertainty: accounting for errors and spatial variability in climate variables for species distribution models. Methods Ecol Evol 6:412–423. doi:10.1111/2041-210X12217 CrossRefGoogle Scholar
  55. Tao WK, Simpson J, Baker D, Braun S, Chou MD, Ferrier B, Johnson D, Khain A, Lang S, Lynn B (2003) Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol Atmos Phys 82(1):97–137CrossRefGoogle Scholar
  56. Tao Z, Yu H, Chin M (2016) Impact of transpacific aerosol on air quality over the United States: a perspective from aerosol–cloud–radiation interactions. Atmos Environ 125:48–60CrossRefGoogle Scholar
  57. Taylor K (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  58. Waliser DE, Kim J, Xue Y, Chao Y, Eldering A, Fovell R, Hall A, Li Q, Liou KN, McWilliams J, Kapnick S, Vasic R, De Sale F, Yu Y (2011) Simulating cold season snowpack: Impacts of snow albedo and multi-layer snow physics. Clim Change 109:S95–S117CrossRefGoogle Scholar
  59. Whan K, Zwiers F (2016) Evaluation of extreme rainfall and temperature over North America in CanRCM4 and CRCM5. Clim Dyn 46:3821–3843CrossRefGoogle Scholar
  60. Zaitchik BF, Santanello JA, Kumar SV, Peters-Lidard CD (2013) Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF). J Hydrometeorol 14:360–367CrossRefGoogle Scholar
  61. Zhu Y, Newell R (1994) Atmospheric rivers and bombs. Geophys Res Lett 21:1999–2002CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.University of CaliforniaLos AngelesUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.ENSCO, Inc./NASA SPoRT CenterHuntsvilleUSA
  4. 4.University of MarylandCollege ParkUSA
  5. 5.NASA Goddard Space Flight CenterGreenbeltUSA
  6. 6.Science Systems and Applications, Inc.LanhamUSA
  7. 7.California State UniversitySeasideUSA
  8. 8.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations