Climate Dynamics

, Volume 51, Issue 11–12, pp 4043–4064 | Cite as

The effects of the Indo-Pacific warm pool on the stratosphere

  • Xin Zhou
  • Jianping Li
  • Fei Xie
  • Ruiqiang Ding
  • Yanjie Li
  • Sen Zhao
  • Jiankai Zhang
  • Yang Li


Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific–North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid–high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.



This work was jointly supported by the SOA Program on Global Change and Air-Sea Interactions (GASI-IPOVAI-03) and the National Natural Science Foundation of China (41575039). Datasets were obtained from the NOAA Climate Prediction Center, SWOOSH and the Met Office Hadley Centre. We also thank NCAR for providing the WACCM4 model (


  1. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics, vol 40. Academic Press, San FranciscoGoogle Scholar
  2. Annamalai H, Hafner J, Sooraj KP, Pillai P (2013) Global warming shifts the monsoon circulation, drying South Asia. J Clim 26:2701–2718CrossRefGoogle Scholar
  3. Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484. doi: 10.1038/461481a CrossRefGoogle Scholar
  4. Ashok K, Behera SK, Rao SA, Weng HY, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res. doi: 10.1029/2006jc003798 CrossRefGoogle Scholar
  5. Brandefelt J, Körnich H (2008) Northern Hemisphere stationary waves in future climate projections. J Clim 21:6341–6353CrossRefGoogle Scholar
  6. Bronnimann S, Luterbacher J, Staehelin J, Svendby TM, Hansen G, Svenoe T (2004) Extreme climate of the global troposphere and stratosphere in 1940-42 related to El Niño. Nature 431:971–974. doi: 10.1038/nature02982 CrossRefGoogle Scholar
  7. Cagnazzo C, Manzini E (2009) Impact of the Stratosphere on the Winter Tropospheric Teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238CrossRefGoogle Scholar
  8. Cagnazzo C, Manzini E, Calvo N, Douglass A, Akiyoshi H, Bekki S, Chipperfield M, Dameris M, Deushi M, Fischer AM, Garny H, Gettelman A, Giorgetta MA, Plummer D, Rozanov E, Shepherd TG, Shibata K, Stenke A, Struthers H, Tian W (2009) Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of Chemistry Climate Models. Atmos Chem Phys 9:8935–8948CrossRefGoogle Scholar
  9. Calvo N, Garcia RR, Randel WJ, Marsh DR (2010) Dynamical mechanism for the Increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J Atmos Sci 67:2331–2340CrossRefGoogle Scholar
  10. Camp CD, Tung KK (2007) Stratospheric polar warming by ENSO in winter: a statistical study. Geophys Res Lett 34:L04809. doi: 10.1029/2006gl028521 CrossRefGoogle Scholar
  11. Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83. doi: 10.1029/Jz066i001p00083 CrossRefGoogle Scholar
  12. Christiansen B (2001) Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: model and reanalysis. J Geophys Res 106:27307–27322. doi: 10.1029/2000jd000214 CrossRefGoogle Scholar
  13. D’Arrigo R, Wilson R, Palmer J, Krusic P, Curtis A, Sakulich J, Bijaksana S, Zulaikah S, Ngkoimani LO, Tudhope A (2006) The reconstructed Indonesian warm pool sea surface temperatures from tree rings and corals: linkages to Asian monsoon drought and El Niño-Southern oscillation. Paleoceanography 21:PA3005. doi: 10.1029/2005PA001256 CrossRefGoogle Scholar
  14. Danabasoglu G, Bates SC, Briegleb BP, Jayne SR, Jochum M, Large WG, Peacock S, Yeager SG (2012) The CCSM4 ocean component. J Clim 25:1361–1389CrossRefGoogle Scholar
  15. DeWeaver E, Nigam S (2000) Do stationary waves drive the zonalmean jet anomalies of the northern winter? RID A-8338-2009. J Clim 13(13):2160–2176CrossRefGoogle Scholar
  16. Feng J, Li JP (2013) Contrasting impacts of two types of ENSO on the Boreal Spring Hadley circulation. J Clim 26:4773–4789CrossRefGoogle Scholar
  17. Feng R, Li JP, Wang JC (2011) Regime change of the boreal summer Hadley circulation and its connection with the tropical SST. J Clim 24:3867–3877CrossRefGoogle Scholar
  18. Fernandez NC, Garcia RR, Herrera RG, Puyol DG, Gimeno L, Martin EH, Rodriguez PR (2004) Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J Clim 17:3934–3946CrossRefGoogle Scholar
  19. Fletcher CG, Kushner PJ (2011) The Role of Linear Interference in the annular mode response to tropical SST forcing. J Clim 24:778–794. doi: 10.1175/2010JCLI3735.1 CrossRefGoogle Scholar
  20. Fletcher CG, Kushner PJ (2013) Linear interference and the northern annular mode response to tropical SST forcing: sensitivity to model configuration. J Geophys Res 118:4267–4279. doi: 10.1002/jgrd.50385 CrossRefGoogle Scholar
  21. Free M, Seidel DJ (2009) Observed El Niño-Southern oscillation temperature signal in the stratosphere. J Geophys Res 114:D23108. doi: 10.1029/2009jd012420 CrossRefGoogle Scholar
  22. Fueglistaler S, Haynes PH (2005) Control of interannual and longer-term variability of stratospheric water vapor. J Geophys Res 110:D24108. doi: 10.1029/2005jd006019 CrossRefGoogle Scholar
  23. Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res 112:D09301. doi: 10.1029/2006jd007485 CrossRefGoogle Scholar
  24. Garcia-Herrera R, Calvo N, Garcia RR, Giorgetta MA (2006) Propagation of ENSO temperature signals into the middle atmosphere: a comparison of two general circulation models and ERA-40 reanalysis data. J Geophys Res 111:D06101. doi: 10.1029/2005jd006061 CrossRefGoogle Scholar
  25. Garfinkel CI, Hartmann DL (2007) Effects of the El Niño-southern oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J Geophys Res 112:D19112. doi: 10.1029/2007jd008481 CrossRefGoogle Scholar
  26. Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:D18114. doi: 10.1029/2008jd009920 CrossRefGoogle Scholar
  27. Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous northern hemisphere stratospheric polar vortices. J Clim 23:3282–3299CrossRefGoogle Scholar
  28. Garfinkel CI, Hurwitz MM, Oman LD, Waugh DW (2013) Contrasting effects of central pacific and eastern pacific El Nino on stratospheric water vapor. Geophys Res Lett 40:4115–4120. doi: 10.1002/grl.50677 CrossRefGoogle Scholar
  29. Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the southern hemisphere tropospheric circulation. J Clim 12:2113–2123CrossRefGoogle Scholar
  30. Geller MA, Zhou XL, Zhang MH (2002) Simulations of the interannual variability of stratospheric water vapor. J Atmos Sci 59:1076–1085CrossRefGoogle Scholar
  31. Gettelman A, Randel WJ, Massie S, Wu F, Read WG, Russell JM (2001) El Niño as a natural experiment for studying the tropical tropopause region. J Clim 14:3375–3392CrossRefGoogle Scholar
  32. Ghil M, Mo KT (1991) Intraseasonal oscillations in the global atmosphere. Part 2. Southern-hemisphere. J Atmos Sci 48:780–790CrossRefGoogle Scholar
  33. Hamilton K (1993) An examination of observed southern oscillation effects in the northern-hemisphere stratosphere. J Atmos Sci 50:3468–3473CrossRefGoogle Scholar
  34. Hardiman SC, Butchart N, Haynes PH, Hare SHE (2007) A note on forced versus internal variability of the stratosphere. Geophys Res Lett 34:L12803. doi: 10.1029/2007GL029726 CrossRefGoogle Scholar
  35. Hatsushika H, Yamazaki K (2003) Stratospheric drain over Indonesia and dehydration within the tropical tropopause layer diagnosed by air parcel trajectories. J Geophys Res 108:4610. doi: 10.1029/2002jd002986 CrossRefGoogle Scholar
  36. Hegyi BM, Deng Y (2011) A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116:D20121. doi: 10.1029/2011JD016001 CrossRefGoogle Scholar
  37. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786CrossRefGoogle Scholar
  38. Hoerling MP, Hurrell JW, Xu TY (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92. doi: 10.1126/science.1058582 CrossRefGoogle Scholar
  39. Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405. doi: 10.1007/s00382-004-0433-x CrossRefGoogle Scholar
  40. Holland MM, Bailey DA, Briegleb BP, Light B, Hunke E (2012) Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice. J Clim 25:1413–1430CrossRefGoogle Scholar
  41. Hoskins BJ, Ambrizzi T (1993) Rossby-wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50:1661–1671CrossRefGoogle Scholar
  42. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  43. Hu YY, Fu Q (2009) Stratospheric wariming in southern hemisphere high latitudes since 1979. Atmos Chem Phys 9:4329–4340. doi: 10.5149/acp-9-4329-2009 CrossRefGoogle Scholar
  44. Hu YY, Pan LF (2009) Arctic stratospheric winter warming forced by observed SSTs. Geophys Res Lett 36:L11707. doi: 10.1029/2009gl037832 CrossRefGoogle Scholar
  45. Hu DZ, Tian WS, Xie F, Shu JC, Dhomse S (2014) Effects of meridional sea surface temperature changes on stratospheric temperature and circulation. Adv Atmos Sci 31:888–900. doi: 10.1007/s00376-013-3152-6 CrossRefGoogle Scholar
  46. Huang RH, Sun FY (1992) Impacts of the tropical western Pacific on the East-Asian summer monsoon. J Meteor Soc Jap 70:243–256CrossRefGoogle Scholar
  47. Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque JF, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi: 10.1175/Bams-D-12-00121.1 CrossRefGoogle Scholar
  48. Hurwitz MM, Newman PA, Oman LD, Molod AM (2011a) Response of the Antarctic stratosphere to two types of El Niño Events. J Atmos Sci 68:812–822CrossRefGoogle Scholar
  49. Hurwitz MM, Song IS, Oman LD, Newman PA, Molod AM, Frith SM, Nielsen JE (2011b) Response of the Antarctic stratosphere to warm pool El Niño Events in the GEOS CCM. Atmos Chem Phys 11:9659–9669. doi: 10.5194/acp-11-9659-2011 CrossRefGoogle Scholar
  50. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  51. Knutson TR, Delworth TL, Dixon KW, Stouffer RJ (1999) Model assessment of regional surface temperature trends (1949–1997). J Geophys Res 104:30981–30996. doi: 10.1029/1999jd900965 CrossRefGoogle Scholar
  52. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  53. Kug JS, Choi J, An SI, Jin FF, Witternberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239CrossRefGoogle Scholar
  54. Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705. doi: 10.1029/2005gl022738 CrossRefGoogle Scholar
  55. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi: 10.1029/2010gl044007 CrossRefGoogle Scholar
  56. Li SL, Chen XT (2014) Quantifying the response strength of the southern stratospheric polar vortex to Indian Ocean warming in austral summer. Adv Atmos Sci 31:492–503. doi: 10.1007/s00376-013-2322-x CrossRefGoogle Scholar
  57. Li Y, Lau NC (2013) Influences of ENSO on stratospheric variability, and the descent of stratospheric perturbations into the lower troposphere. J Clim 26:4725–4748CrossRefGoogle Scholar
  58. Li Y, Li JP (2012) Propagation of planetary waves in the horizonal non-uniform basic flow (in Chinese). Chin J Geophys 55:361–371Google Scholar
  59. Li CY, Mu MQ, Zhou GQ (1999) The variation of warm pool in the equatorial western Pacific and its impacts on climate. Adv Atmos Sci 16:378–394. doi: 10.1007/s00376-999-0017-0 CrossRefGoogle Scholar
  60. Li SL, Perlwitz J, Hoerling MP, Chen XT (2010) Opposite annular responses of the northern and southern hemispheres to Indian Ocean warming. J Clim 23:3720–3738CrossRefGoogle Scholar
  61. Li JP, Ren RC, Qi YQ, Wang FM, Lu RY, Zhang PQ, Jiang ZH, Duan WS, Yu F, Yang YZ (2013a) Progress in air-land-sea interactions in Asia and their role in global and Asian climate change (in Chinese). Chin J Atmos Sci 37:518–538Google Scholar
  62. Li YJ, Li JP, Feng J (2013b) Boreal summer convection oscillation over the Indo-Western Pacific and its relationship with the East Asian summer monsoon. Atmos Sci Lett 14:66–71. doi: 10.1002/asl2.418 CrossRefGoogle Scholar
  63. Li YJ, Li JP, Jin FF, Zhao S (2015) Interhemispheric propagation of stationary rossby waves in a horizontally nonuniform background flow. J Atmos Sci 72:3233–3256. doi: 10.1175/Jas-D-14-0239.1 CrossRefGoogle Scholar
  64. Lin P, Fu Q, Hartmann DL (2012) Impact of tropical SST on stratospheric planetary waves in the southern hemisphere. J Clim 25:5030–5046CrossRefGoogle Scholar
  65. Ma J, Li JP (2008) The principal modes of variability of the boreal winter Hadley cell. Geophys Res Lett 35. doi: 10.1029/2007gl031883 CrossRefGoogle Scholar
  66. Manganello JV (2008) The influence of sea surface temperature anomalies on low-frequency variability of the North Atlantic oscillation. Clim Dyn 30:621–641. doi: 10.1007/s00382-007-0312-3 CrossRefGoogle Scholar
  67. Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19:3863–3881CrossRefGoogle Scholar
  68. Marsh DR, Garcia RR (2007) Attribution of decadal variability in lower-stratospheric tropical ozone. Geophys Res Lett 34:L21807. doi: 10.1029/2007gl030935 CrossRefGoogle Scholar
  69. Marsh DR, Mills MJ, Kinnison DE, Lamarque JF, Calvo N, Polvani LM (2013) Climate change from 1850 to 2005 simulated in CESM1(WACCM). J Clim 26:7372–7391CrossRefGoogle Scholar
  70. Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang MH (2013) The mean climate of the community atmosphere model (CAM4) in forced SST and fully coupled experiments. J Clim 26:5150–5168CrossRefGoogle Scholar
  71. Newman PA, Nash ER, Rosenfield JE (2001) What controls the temperature of the Arctic stratosphere during the spring? J Geophys Res 106:19999–20010CrossRefGoogle Scholar
  72. Nishii K, Nakamura H, Orsolini YJ (2010) Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys Res Lett 37:L13805. doi: 10.1029/2010GL043551 CrossRefGoogle Scholar
  73. Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42:217–229CrossRefGoogle Scholar
  74. Polvani LM, Waugh DW (2004) Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim 17:3548–3554CrossRefGoogle Scholar
  75. Randel WJ (1987) A study of planetary-waves in the southern winter troposphere and stratosphere. Part 1: wave structure and vertical propagation. J Atmos Sci 44:917–935CrossRefGoogle Scholar
  76. Randel WJ, Garcia RR, Calvo N, Marsh D (2009) ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys Res Lett 36:L15822. doi: 10.1029/2009GL039343 CrossRefGoogle Scholar
  77. Raval A, Ramanathan V (1989) Observational determination of the greenhouse effect. Nature 342:758–761. doi: 10.1038/342758a0 CrossRefGoogle Scholar
  78. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  79. Sassi F, Kinnison D, Boville BA, Garcia RR, Roble R (2004) Effect of El Niño-Southern oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J Geophys Res 109:D06101. doi: 10.1029/2003jd004434 CrossRefGoogle Scholar
  80. Scaife AA, Butchart N, Jackson DR, Swinbank R (2003) Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys Res Lett. doi: 10.1029/2003gl017591 CrossRefGoogle Scholar
  81. Scherllin-Pirscher B, Deser C, Ho SP, Chou C, Randel W, Kuo YH (2012) The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements. Geophys Res Lett 39:L20801. doi: 10.1029/2012gl053071 CrossRefGoogle Scholar
  82. Shin SI, Sardeshmukh PD, Yeh SW (2011) Sensitivity of the northeast Asian summer monsoon to tropical sea surface temperatures. Geophys Res Lett 38:L22702. doi: 10.1029/2011gl049391 CrossRefGoogle Scholar
  83. Simmons A, Uppala S, Dee D (2007a) Update on ERA-Interim. ECMWF Newsletter 111Google Scholar
  84. Sigmond M, Scinocca JF, Kharin VV, Shepherd TG (2013) Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat Geosci 6:98–102. doi: 10.1038/NGEO1698 CrossRefGoogle Scholar
  85. Simmons A, Uppala S, Dee D, Kobayashi S (2007b) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35Google Scholar
  86. Smith KL, Fletcher CG, Kushner PJ (2010) The role of linear interference in the annular mode response to extratropical surface forcing. J Clim 23:6036–6050CrossRefGoogle Scholar
  87. Su H, Read WG, Jiang JH, Waters JW, Wu DL, Fetzer EJ (2006) Enhanced positive water vapor feedback associated with tropical deep convection: new evidence from Aura MLS. Geophys Res Lett 33:L05709. doi: 10.1029/2005gl025505 CrossRefGoogle Scholar
  88. Sun C, Li JP, Zhao S (2015) Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci Rep 5:16853. doi: 10.1038/srep16853 CrossRefGoogle Scholar
  89. Sun C, Li JP, Ding R Q, Jin Z (2016) Cold 564 season Africa-Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability. Clim Dyn. doi: 10.1007/s00382-016-3309-y CrossRefGoogle Scholar
  90. Taguchi M, Hartmann DL (2006) Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J Clim 19:324–332CrossRefGoogle Scholar
  91. Tompkins AM (2001) On the relationship between tropical convection and sea surface temperature. J Clim 14:633–637CrossRefGoogle Scholar
  92. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  93. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newslett 115:12–18Google Scholar
  94. Van Loon H, Labitzke K (1987) The southern oscillation. Part V: the anomalies in the lower stratosphere of the Northern-Hemisphere in winter and a comparison with the Quasi-Biennial oscillation. Mon Weather Rev 115:357–369CrossRefGoogle Scholar
  95. Wu ZW, Li XX, Li YJ, Li Y (2016) Potential influence of Arctic Sea ice to the interannual variations of East Asian spring precipitation. J Clim. doi: 10.1175/JCLI-D-15-0128.1 CrossRefGoogle Scholar
  96. Xie F, Tian W, Austin J, Li J, Tian H, Shu J, Chen C (2011) The effect of ENSO activity on lower stratospheric water vapor. Atmos Chem Phys Discuss 11(2):4141–4166CrossRefGoogle Scholar
  97. Xie F, Li J, Tian W, Feng J, Huo Y (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12:5259–5273. doi: 10.5194/acp-12-5259-2012 CrossRefGoogle Scholar
  98. Xie F, Li JP, Tian WS, Zhang JK, Shu JC (2014a) The impacts of two types of El Niño on global ozone vari ations in the last three decades. Adv Atmos Sci 31:1113–1126. doi: 10.1007/s00376-013-3166-0 CrossRefGoogle Scholar
  99. Xie F, Li JP, Tian WS, Zhang JK, Sun C (2014b) The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environ Res Lett 9:064020. doi: 10.1088/1748-9326/9/6/064020 CrossRefGoogle Scholar
  100. Xie F, Li JP, Tian WS, Li YJ, Feng J (2014c) Indo-Pacific warm pool area expansion, modoki activity, and tropical cold-point tropopause temperature variations. Sci Rep 4:4552. doi: 10.1038/srep04552.CrossRefGoogle Scholar
  101. Xie F, Li J, Tian W, Fu Q, Jin F-F, Hu Y, Zhang J, Wang W, Sun C, Feng J, Yang Y and Ding R (2016) A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ Res Lett 11:124026.CrossRefGoogle Scholar
  102. Xu HL, Li JP, Feng J, Mao JY (2013) The asymmetric relationship bewteen the winter NAO and the precipitation in southwest China. Acta Meteorol Sin 70:1276–1291Google Scholar
  103. Yan XH, Ho CR, Zheng Q, Klemas V (1992) Temperature and size variabilities of the western Pacific warm pool. Science 258:5088. doi: 10.1126/science 0.1643 CrossRefGoogle Scholar
  104. Yeh SW, Kug J. S., Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Natural 461:511–514. doi: 10.1038/nature08316 CrossRefGoogle Scholar
  105. Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38:L02704. doi: 10.1029/2011gl045886 CrossRefGoogle Scholar
  106. Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106. doi: 10.1029/2006jd007654 CrossRefGoogle Scholar
  107. Yulaeva E, Holton JR, Wallace JM (1994) On the cause of the annual cycle in tropical lower-stratospheric temperatures. J Atmos Sci 51:169–174CrossRefGoogle Scholar
  108. Zhang J, Tian W, Chipperfield MP, Xie F, Huang J (2016) Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat Clim Change 6:1094–1099CrossRefGoogle Scholar
  109. Zhao S, Li JP, Li YJ (2015) Dynamics of an Interhemispheric teleconnection across the critical latitude through a southerly duct during boreal winter. J Clim 28:7437–7456. doi: 10.1175/JCLI-D-14-00425.1 CrossRefGoogle Scholar
  110. Zheng F, Li JP, Li YJ, Zhao S, Deng DF (2016) Influence of the summer NAO on the spring-NAO-based predictability of the East Asian summer monsoon. J Appl Meteorol Clim 55:1459–1476. doi: 10.1175/JAMC-D-15-0199.1 CrossRefGoogle Scholar
  111. Zhou TJ, Zhang J (2011) The vertical structures of atmospheric temperature anomalies associated with two flavors of El Niño simulated by AMIP II models. J Clim 24:1053–1070CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.College of Global Change and Earth System Science (GCESS)Beijing Normal UniversityBeijingChina
  4. 4.Key Laboratory of Meteorological Disaster of Ministry of EducationNanjing University of Information Science and TechnologyNanjingChina
  5. 5.School of Ocean and Earth Science and TechnologyUniversity of Hawai’i at MānoaHonoluluUSA
  6. 6.College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  7. 7.Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina

Personalised recommendations