Advertisement

Climate Dynamics

, Volume 49, Issue 11–12, pp 4237–4261 | Cite as

Predictability of 2-year La Niña events in a coupled general circulation model

  • Pedro N. DiNezio
  • Clara Deser
  • Yuko Okumura
  • Alicia Karspeck
Article

Abstract

The predictability of the duration of La Niña is assessed using the Community Earth System Model Version 1 (CESM1), a coupled climate model capable of simulating key features of the El Niño/Southern Oscillation (ENSO) phenomenon, including the multi-year duration of La Niña. Statistical analysis of a 1800 year long control simulation indicates that a strong thermocline discharge or a strong El Niño can lead to La Niña conditions that last 2 years (henceforth termed 2-year LN). This relationship suggest that 2-year LN maybe predictable 18 to 24 months in advance. Perfect model forecasts performed with CESM1 are used to further explore the link between 2-year LN and the “Discharge” and “Peak El Niño” predictors. Ensemble forecasts are initialized on January and July coinciding with ocean states characterized by peak El Niño amplitudes and peak thermocline discharge respectively. Three cases with different magnitudes of these predictors are considered resulting in a total of six ensembles. Each “Peak El Niño” and “Discharge” ensemble forecast consists of 30 or 20 members respectively, generated by adding a infinitesimally small perturbation to the atmospheric initial conditions unique to each member. The forecasts show that the predictability of 2-year LN, measured by the potential prediction utility (PPU) of the \({\mathrm{Ni}{\tilde{\mathrm{n}}}\mathrm{o}}\)-3.4 SST index during the second year, is related to the magnitude of the initial conditions. Forecasts initialized with strong thermocline discharge or strong peak El Niño amplitude show higher PPU than those with initial conditions of weaker magnitude. Forecasts initialized from states characterized by weaker predictors are less predictable, mainly because the ensemble-mean signal is smaller, and therefore PPU is reduced due to the influence of forecast spread. The error growth of the forecasts, measured by the spread of the \({\mathrm{Ni}{\tilde{\mathrm{n}}}\mathrm{o}}\)-3.4 SST index, is independent of the initial conditions and appears to be driven by wind variability over the southeastern tropical Pacific and the western equatorial Pacific. Analysis of observational data supports the modeling results, suggesting that the “thermocline discharge” and “Peak El Niño” predictors could also be used to diagnose the likelihood of multi-year La Niña events in nature. These results suggest that CESM1 could provide skillful long-range operational forecasts under specific initial conditions.

Keywords

ENSO El Nino La Nina prediction discharge 

Notes

Acknowledgements

This study was supported by NOAA’s Climate Program Office’s Modeling, Analysis, Predictions, and Projections program (Grant NA14OAR4310229). PDN received additional support from the Climate and Global Dynamics division during a long term visit to NCAR. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation (NSF) and other agencies. NCAR is sponsored by the NSF.

References

  1. Anderson BT, Perez RC, Karspeck A (2013) Triggering of El Nio onset through trade wind-induced charging of the equatorial Pacific. Geophys Res Lett 40(6):1212–1216. doi: 10.1002/grl.50200
  2. Annamalai H, Kida S, Hafner J (2010) Potential Impact of the tropical Indian Ocean-Indonesian Seas on El Niño characteristics. J Clim 23(14):3933–3952. doi: 10.1175/2010JCLI3396.1
  3. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139(674):1132–1161. doi: 10.1002/qj.2063
  4. Cane MA, Zebiak SE (1985) A theory for El Niño and the Southern Oscillation. Science 228(4703):1085–1087, doi:  10.1126/science.228.4703.1085. http://www.sciencemag.org/content/228/4703/1085.abstract. http://www.sciencemag.org/content/228/4703/1085.full.pdf
  5. Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño-Southern oscillation. Geophys Res Lett 34(16): doi: 10.1029/2007GL030302
  6. Chiodi AM, Harrison DE (2015) Equatorial Pacific easterly wind surges and the Onset of La Niña events. J Clim 28(2):776–792. doi: 10.1175/JCLI-D-14-00227.1
  7. Choi KY, Vecchi GA, Wittenberg AT (2013) ENSO transition, duration and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J Clim doi:  10.1175/JCLI-D-13-00045.1
  8. Cook B, Seager R, Miller R (2011) Atmospheric circulation anomalies during two persistent north american droughts: 1932–1939 and 1948–1957. Clim Dyn 36(11–12):2339–2355CrossRefGoogle Scholar
  9. Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and Pacific decadal variability in the community climate system model version 4. J Clim 25(8):2622–2651. doi: 10.1175/JCLI-D-11-00301.1
  10. DiNezio PN, Deser C (2014) Nonlinear controls on the persistence of La Niña. J Clim 27(19):7335–7355CrossRefGoogle Scholar
  11. Fedorov AV, Harper SL, Philander SG, Winter B, Wittenberg A (2003) How predictable is El Niño? Bull Am Meteorol Soc 84(7):911–919CrossRefGoogle Scholar
  12. Frauen C, Dommenget D (2010) El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys Res Lett 37(18): doi: 10.1029/2010GL044444
  13. Hoerling M, Kumar A (2003) The Perfect Ocean for drought. Science 299(5607):691–694CrossRefGoogle Scholar
  14. Hoerling M, Quan X-W, Eischeid J (2009) Distinct causes for two principal U.S. droughts of the 20th century. Geophys Res Lett 36:L19708. doi: 10.1029/2009GL039860 CrossRefGoogle Scholar
  15. Hoerling M, Kumar A, Dole R, Nielsen-Gammon JW, Eischeid J, Perlwitz J, Quan XW, Zhang T, Pegion P, Chen M (2013) Anatomy of an extreme event. J Clim 26(9):2811–2832CrossRefGoogle Scholar
  16. Hu ZZ, Kumar A, Xue Y, Jha B (2013) Why were some La Niñas followed by another La Niña? Clim Dyn 42:1–14Google Scholar
  17. Hurrell JW, Holland MM, Gent PR et al. (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94(9):1339–1360CrossRefGoogle Scholar
  18. Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Nino. Nat Geosci 3(3):168–172. doi: 10.1038/ngeo760
  19. Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM, Bates SC, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque JF, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96(8):1333–1349CrossRefGoogle Scholar
  20. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29(23):40-1–40-4. doi: 10.1029/2002GL015924
  21. Kirtman B, Shukla J, Balmaseda M, Graham N, Penland C, Xue Y, Zebiak S (2001) Current status of ENSO forecast skill. Tech. Rep. 56, CLIVAR Working Group on Seasonal to Interannual PredictionGoogle Scholar
  22. Kirtman BP, Shukla J, Huang B, Zhu Z, Schneider EK (1997) Multiseasonal predictions with a coupled tropical ocean-global atmosphere system. Mon Weather Rev 125(5):789–808. doi: 10.1175/1520-0493(1997)125<0789:MPWACT>2.0.CO;2
  23. Kleeman R (2002) Measuring dynamical prediction utility using relative entropy. J Atmos Sci 59(13):2057–2072. doi:  10.1175/1520-0469(2002)059<2057:MDPUUR>2.0.CO;2
  24. Kleeman R, Moore AM (1999) A new method for determining the reliability of dynamical ENSO predictions. Mon Weather Rev 127(5):694–705. doi: 10.1175/1520-0493(1999)127<0694:ANMFDT>2.0.CO;2
  25. Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19(9):1784–1801. doi: 10.1175/JCLI3660.1
  26. Kug JS, Kirtman BP, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean in an interactive ensemble coupled model. J Clim 19(24):6371–6381. doi: 10.1175/JCLI3980.1
  27. Larson SM, Kirtman BP (2015) Revisiting ENSO coupled instability theory and SST error growth in a fully coupled model. J Clim 28(12):4724–4742. doi: 10.1175/JCLI-D-14-00731.1
  28. Larson SM, Kirtman BP (2016) Drivers of coupled model ENSO error dynamics and the spring predictability barrier. Climate Dyn 1–14. doi: 10.1007/s00382-016-3290-5
  29. Latif M, Anderson D, Barnett T, Cane M, Kleeman R, Leetmaa A, O’Brien J, Rosati A, Schneider E (1998) A review of the predictability and prediction of ENSO. J Geophys Res Oceans 103(C7):14375–14393, doi: 10.1029/97JC03413
  30. van Loon H, Shea DJ (1985) The Southern Oscillation. Part IV: The precursors South of 15\({}^\circ\) to the extremes of the oscillation. Mon Weather Rev 113(12):2063–2074. doi: 10.1175/1520-0493(1985)113<2063:TSOPIT>2.0.CO;2
  31. McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophys Res Lett 26(19):2961–2964CrossRefGoogle Scholar
  32. McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys Res Lett 36(13): doi: 10.1029/2009GL038774
  33. Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res Oceans 103(C7):14261–14290Google Scholar
  34. Ohba M, Ueda H (2007) An Impact of SST Anomalies in the Indian Ocean in acceleration of the El Nino to La Nina transition. J Meteorol Soc Jpn Ser II 85(3):335–348. doi: 10.2151/jmsj.85.335, http://ci.nii.ac.jp/naid/110006318050/en/
  35. Ohba M, Ueda H (2009) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22(1):177–192. doi: 10.1175/2008JCLI2334.1
  36. Ohba M, Watanabe M (2011) Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J Clim 25(9):3321–3335. doi: 10.1175/JCLI-D-11-00409.1
  37. Okumura YM (2013) Origins of tropical Pacific decadal variability: role of stochastic atmospheric forcing from the South Pacific. J Clim 26(24):9791–9796. doi: 10.1175/JCLI-D-13-00448.1
  38. Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23(21):5826–5843. doi: 10.1175/2010JCLI3592.1
  39. Okumura YM, Ohba M, Deser C, Ueda H (2011) A proposed mechanism for the asymmetric duration of El Niño and La Niña. J Clim 24(15):3822–3829. doi: 10.1175/2011JCLI3999.1
  40. Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8(8):1999–2024. doi: 10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2
  41. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14): doi: 10.1029/2002JD002670
  42. Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean Dipole mode events on global climate. Clim Res 25(2):151–169. doi: 10.3354/cr025151. http://www.int-res.com/abstracts/cr/v25/n2/p151-169/
  43. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363Google Scholar
  44. Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) Causes of long-term drought in the U.S. Great Plains. J Clim 17(3):485–503CrossRefGoogle Scholar
  45. Seager R (2007) The turn of the century North American drought: global context, dynamics, and past analogs. J Clim 20(22):5527–5552CrossRefGoogle Scholar
  46. Seager R, Kushnir Y, Ting M, Cane M, Naik N, Miller J (2008) Would advance knowledge of 1930s SSTs have allowed prediction of the Dust Bowl drought? J Clim 21(13):3261–3281CrossRefGoogle Scholar
  47. Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO part II: analysis. J Clim 14(4):445–466CrossRefGoogle Scholar
  48. Trenberth KE, Shea DJ (1987) On the evolution of the Southern Oscillation. Mon Weather Rev 115(12):3078–3096. doi: 10.1175/1520-0493(1987)115<3078:OTEOTS>2.0.CO;2
  49. Trenberth KE, Branstator GW, Arkin PA (1988) Origins of the 1988 North American drought. Science 242(4886):1640–1645CrossRefGoogle Scholar
  50. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28(20):3923–3926. doi: 10.1029/2001GL013435
  51. Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16(16):2668–2675CrossRefGoogle Scholar
  52. Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the pacific: the role of thermodynamic coupling and seasonality. J Clim 22(3):518–534. doi: 10.1175/2008JCLI2220.1
  53. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401(6751):356–360CrossRefGoogle Scholar
  54. Xie XP, Philander SG (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46(4):340–350CrossRefGoogle Scholar
  55. Yamanaka G, Yasuda T, Fujii Y, Matsumoto S (2009) Rapid termination of the 2006 El Nio and its relation to the Indian Ocean. Geophys Res Lett 36(7). doi: 10.1029/2009GL037298 (l07702)
  56. Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6(8):1567–1586. doi: 10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2
  57. Zhang H, Clement A, Nezio PD (2014) The South Pacific meridional mode: a mechanism for ENSO-like variability. J Clim 27(2):769–783. doi: 10.1175/JCLI-D-13-00082.1

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Pedro N. DiNezio
    • 1
    • 3
  • Clara Deser
    • 2
  • Yuko Okumura
    • 3
  • Alicia Karspeck
    • 2
  1. 1.Department of Oceanography, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.University of Texas Institute for GeophysicsAustinUSA

Personalised recommendations