Forced changes to twentieth century ENSO diversity in a last Millennium context

  • Samantha Stevenson
  • Antonietta Capotondi
  • John Fasullo
  • Bette Otto-Bliesner
Article

Abstract

The El Niño/Southern Oscillation (ENSO) exhibits considerable differences between the evolution of individual El Niño and La Niña events (‘ENSO diversity’), with significant implications for impacts studies. However, the degree to which external forcing may affect ENSO diversity is not well understood, due to both internal variability and potentially compensatory contributions from multiple forcings. The Community Earth System Model Last Millennium Ensemble (CESM LME) provides an ideal testbed for studying the sensitivity of twentieth century ENSO to forced climate changes, as it contains many realizations of the 850–2005 period with differing combinations of forcings. Metrics of ENSO amplitude and diversity are compared across LME simulations, and although forced changes to ENSO amplitude are generally small, forced changes to diversity are often detectable. Anthropogenic changes to greenhouse gas and ozone/aerosol emissions modify the persistence of Eastern and Central Pacific El Niño events, through shifts in the upwelling and zonal advective feedbacks; these influences generally cancel one another over the twentieth century. Other forcings can also be quite important: land use changes amplify Eastern Pacific El Niño events via modulating zonal advective heating, and orbital forcing tends to preferentially terminate twentieth century Central Pacific El Niño events due to enhanced eastern Pacific cooling during boreal winter and spring. Our results indicate that multiple anthropogenic and natural forcings can have substantial impacts on ENSO diversity, and suggest that correctly representing the net ENSO diversity response to climate change will depend on the precise balance between all these influences.

Keywords

El Niño/Southern oscillation Climate variability Climate modeling Tropical pacific Climate dynamics 

References

  1. Ashok K, Behera S, Rao A, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112(C11):007. doi:10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn. doi:10.1007/s00382-013-1783-z Google Scholar
  3. Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  4. Capotondi A (2013) ENSO diversity in the NCAR CCSM4 climate model. J Geophys Res Ocean 118:4755–4770. doi:10.1002/jgrc.20335 CrossRefGoogle Scholar
  5. Capotondi A, Sardeshmukh PD (2015) Optimal precursors of different types of ENSO events. Geophys Res Lett 42:9952–9960CrossRefGoogle Scholar
  6. Capotondi A, Wittenberg AT, Newman M, Di Loernzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin FF, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh SW (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938. doi:10.1175/BAMS-D-13-00117.1 CrossRefGoogle Scholar
  7. Cobb K, Charles CD, Cheng H, Edwards RL, Sayani HR, Westphal N (2013) Highly variable El Niño-Southern oscillation throughout the Holocene. Science 339:67–70. doi:10.1126/science.1228246 CrossRefGoogle Scholar
  8. Collins M, An SI, Cai W, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical pacific ocean and El Niño. Nat Geosci 3:391–397. doi:10.1038/NGEO868 CrossRefGoogle Scholar
  9. Di Nezio P, Kirtman B, Clement A, Lee SK, Vecchi G, Wittenberg A (2012) Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J Clim 25:7399–7420CrossRefGoogle Scholar
  10. Fasullo JT, Otto-Bliesner BL, Stevenson S (2017) ENSO’s changing influence on heat waves and wildfire in a changing climate. Nat Clim Change, under reviewGoogle Scholar
  11. Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288:1997–2002CrossRefGoogle Scholar
  12. Gao CC, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J Geophys Res 113(D23):111. doi:10.1029/2008JD010239 CrossRefGoogle Scholar
  13. Graham FS, Brown JN, Langlais C, Marsland SJ, Wittenberg AT, Holbrook NJ (2014) Effectiveness of the Bjerknes stability index in representing ocean dynamics. Clim Dyn 43:2399–2414. doi:10.1007/s00382-014-2062-3 CrossRefGoogle Scholar
  14. Huang B, Xue Y, Zhang D, Kumar A, McPhaden MJ (2010) The NCEP GODAS ocean analysis of the tropical pacific mixed layer heat budget on seasonal to interannual time scales. J Clim 23(18):4901–4925. doi:10.1175/2010JCLI3373.1 CrossRefGoogle Scholar
  15. Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer F, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Chang 109:117–161. doi:10.1007/s10584-011-0153-2 CrossRefGoogle Scholar
  16. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531CrossRefGoogle Scholar
  17. Kao HY, Yu JY (2009) Contrasting eastern-pacific and central-pacific types of ENSO. J Clim 22:615–632. doi:10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  18. Karamperidou C, DiNezio PM, Timmermann A, Jin FF, Cobb KM (2015) The response of ENSO flavors to mid-Holocene climate: implications for proxy interpretation. Paleoceanography 30(5):527–547CrossRefGoogle Scholar
  19. Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster J, Bates S, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque JF, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-13-00255.1 Google Scholar
  20. Kessler W (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29(23):2125. doi:10.1029/2002GL015924 CrossRefGoogle Scholar
  21. Kug JS, An SI, Ham YG, Kang IS (2010) Changes in El Niño and La Niña teleconnections over North Pacific-America in the global warming simulations. Theor Appl Climatol. doi:10.1007/s00704-009-0183-0 Google Scholar
  22. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, Van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos Chem Phys 10:7039–7071. doi:10.5194/acp-10-7017-2010 CrossRefGoogle Scholar
  23. Large WG, Danabasoglu G, Doney SC, McWilliams JC (1997) Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. J Phys Oceanogr 27:2418–2447CrossRefGoogle Scholar
  24. Marsh DR, Mills MJ, Kinnison DE, Lamarque JF, Calvo N, Polvani LM (2013) Climate change from 1850 to 2005 simulated in CESM1(WACCM). J Clim 26:7372–7391. doi:10.1175/JCLI -D-12-00558.1 CrossRefGoogle Scholar
  25. McGregor S, Timmermann A, Timm O (2010) A unified proxy for ENSO and PDO variability since 1650. Clim Past 6:1–17CrossRefGoogle Scholar
  26. McPhaden MJ, Lee T, McClurg D (2011) El Nino and its relationship to changing background conditions in the tropical Pacific. Geophys Res Lett 38(L15):709. doi:10.1029/2011GL048275 Google Scholar
  27. Otto-Bliesner B, Brady EC, Fasullo J, Jahn A, Landrum L, Stevenson S, Rosenbloom N, Mai A, Strand G, Edwards J (2016) Climate variability and change since 850 C.E.: an ensemble approach with the community earth system model (CESM). Bull Am Meteorol Soc. doi:10.1175/BAMS-D-14-00233.1
  28. Pacanowski RC, Griffies SM (1999) MOM 3.0 manual. NOAA/Geophys Fluid Dyn Lab, Princeton, NJ USA, Laboratory Report 4Google Scholar
  29. Philip S, van Oldenborgh G (2006) Shifts in ENSO coupling processes under global warming. Geophys Res Lett 33(L11):704Google Scholar
  30. Pielke RAS, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc A 360:1705–1719. doi:10.1098/rsta.2002.1027 CrossRefGoogle Scholar
  31. Pongratz J, Raddatz T, Reick CH, Esch M, Claussen M (2008) Radiative forcing from anthropogenic land cover change since AD 800. Geophys Res Lett 36:L02,709. doi:10.1029/L036394 Google Scholar
  32. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 114:2352–2362CrossRefGoogle Scholar
  33. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45CrossRefGoogle Scholar
  34. Stevenson S (2012) Changes to ENSO strength and impacts in the CMIP5 models. Geophys Res Lett 39(L17):703Google Scholar
  35. Stevenson S, Fox-Kemper B, Jochum M, Rajagopalan B, Yeager S (2010) Model ENSO validation using wavelet probability analysis. J Clim 23:5540–5547CrossRefGoogle Scholar
  36. Stevenson S, Fox-Kemper B, Jochum M (2012) Understanding the ENSO-CO\(_2\) link using stabilized climate simulations. J Clim 25:7917–7936. doi:10.1175/JCLI-D-11-00546.1 CrossRefGoogle Scholar
  37. Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl G (2012) Will there be a significant change to El Niño in the 21st century? J Clim 25:2129–2145. doi:10.1175/JCLI-D-11-00252.1 CCSM4 special issueCrossRefGoogle Scholar
  38. van Oldenborgh G, Philip S, Collins M (2005) El Niño in a changing climate. Ocean Sci 1:81–95CrossRefGoogle Scholar
  39. Vecchi G, Soden B (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi:10.1175/JCLI4258.1 CrossRefGoogle Scholar
  40. Vecchi G, Soden B, Wittenberg A, Held I, Leetmaa A, Harrison M (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nature 44:72–75. doi:10.1038/nature04744 Google Scholar
  41. Vieira LEA, Solanki SK, Krivova NA, Usoskin I (2011) Evolution of the solar irradiance during the Holocene. Astron Astrophys 531:A6. doi:10.1051/0004-6361/201015843 CrossRefGoogle Scholar
  42. Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36(L12):702Google Scholar
  43. Xie SP, Deser C, Vecchi G, Ma J, Teng H, Wittenberg A (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986CrossRefGoogle Scholar
  44. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514. doi:10.1038/nature08316 CrossRefGoogle Scholar
  45. Yu JY, Zou Y, Kim ST, Lee T (2012) The changing impact of El Nino on US winter temperatures. Geophys Res Lett 39(L15):702. doi:10.1029/2012GL052483 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Samantha Stevenson
    • 1
  • Antonietta Capotondi
    • 2
  • John Fasullo
    • 1
  • Bette Otto-Bliesner
    • 1
  1. 1.Climate and Global Dynamics DivisionNational Center for Atmospheric ResearchBoulderUSA
  2. 2.Physical Sciences DivisionNational Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations