Climate Dynamics

, Volume 49, Issue 11–12, pp 4089–4106 | Cite as

How accurately do we know the temperature of the surface of the earth?

Article

Abstract

The earth’s near surface air temperature is important in a variety of applications including for quantifying global warming. We analyze 6 monthly series of atmospheric temperatures from 1880 to 2012, each produced with different methodologies. We first estimate the relative error by systematically determining how close the different series are to each other, the error at a given time scale is quantified by the root mean square fluctuations in the pairwise differences between the series as well as between the individual series and the average of all the available series. By examining the differences systematically from months to over a century, we find that the standard short range correlation assumption is untenable, that the differences in the series have long range statistical dependencies and that the error is roughly constant between 1 month and one century—over most of the scale range, varying between ±0.03 and ±0.05 K. The second part estimates the absolute measurement errors. First we make a stochastic model of both the true earth temperature and then of the measurement errors. The former involves a scaling (fractional Gaussian noise) natural variability term as well as a linear (anthropogenic) trend. The measurement error model involves three terms: a classical short range error, a term due to missing data and a scale reduction term due to insufficient space–time averaging. We find that at 1 month, the classical error is ≈±0.01 K, it decreases rapidly at longer times and it is dominated by the others. Up to 10–20 years, the missing data error gives the dominate contribution to the error: 15 ± 10% of the temperature variance; at scales >10 years, the scale reduction factor dominates, it increases the amplitude of the temperature anomalies by 11 ± 8% (these uncertainties quantify the series to series variations). Finally, both the model itself as well as the statistical sampling and analysis techniques are verified on stochastic simulations that show that the model well reproduces the individual series fluctuation statistics as well as the series to series fluctuation statistics. The stochastic model allows us to conclude that with 90% certainty, the absolute monthly and globally averaged temperature will lie in the range −0.109 to 0.127 °C of the measured temperature. Similarly, with 90% certainty, for a given series, the temperature change since 1880 is correctly estimated to within ±0.108 of its value.

Keywords

Global temperature Uncertainty Scaling Stochastic modelling 

Notes

Acknowledgements

The author thanks R. Hébert, L. del Rio Amador and David Clarke for useful discussions. This work was unfunded, there were no conflicts of interest. The data were downloaded from the publically accessible sites to be found in the corresponding references (first paragraph, Sect. 2).

References

  1. Bendjoudi, H., Hubert, P., Schertzer, D., Lovejoy, S. (1997) Interprétation multifractale des courbes intensité-durée-fréquence des précipitations, Multifractal point of view on rainfall intensity-duration-frequency curves, C.R.S., (Sciences de la terre et des planetes/Earth and Planetary Sciences). 325:323–326Google Scholar
  2. Biagini F, Hu Y, Øksendal B, Zhang T (2008) Stochastic Calculus for Fractional Brownian Motion and Applications. Springer-Verlag, LondonCrossRefGoogle Scholar
  3. Brohan P, Kennedy JJ, Harris I, S. F. B. Tett, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106 doi:10.1029/2005JD006548 CrossRefGoogle Scholar
  4. Bunde A, Eichner JF, Havlin S, Koscielny-Bunde E, Schellnhuber HJ, Vyushin D (2004) Comment on ‘‘scaling of atmosphere and ocean temperature correlations in observations and climate models’’. Phys Rev Lett 92:039801–039801CrossRefGoogle Scholar
  5. Compo GP et al (2011) The twentieth century reanalysis project. Quarterly J Roy Meteorol Soc 137:1–28 doi:10.1002/qj.776 CrossRefGoogle Scholar
  6. Compo GP, Sardeshmukh PD, Whitaker JS, Brohan P, Jones PD, McColl C (2013) Independent confirmation of global land warming without the use of station temperatures. Geophys Res Lett 40:3170–3174 doi:10.1002/grl.50425 CrossRefGoogle Scholar
  7. Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorol Soc 140:1935–1944. doi:10.1002/qj.2297 CrossRefGoogle Scholar
  8. de Lima MIP, Lovejoy S (2015) Macroweather precipitation variability up to global and centennial scales. Wat Resour Res 51:9490–9513. doi:10.1002/2015WR017455
  9. Diamond HJ et al (2013) US climate reference network after one decade of operations: status and assessment. Bull Amer Meteor Soc 94:485–498 doi:10.1175/BAMS-D-12-00170.1 CrossRefGoogle Scholar
  10. Efstathiou MN, Varotsos CA (2010) On the altitude dependence of the temperature scaling behaviour at the global troposphere. Int J Remote Sens 31(2):343–349CrossRefGoogle Scholar
  11. Franzke C (2012) Nonlinear trends, long-range dependence and climate noise properties of temperature. J Clim 25:4172–4183. doi:10.1175/JCLI-D-11-00293.1 CrossRefGoogle Scholar
  12. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004 doi:10.1029/2010RG000345 CrossRefGoogle Scholar
  13. Hausfather Z, Cowtan K, Clarke DC, Jacobs P, Richardson M, Rohde R (2017) Assessing recent warming using instrumentally-homogeneous sea surface temperature records. Sci Adv 3(1):e1601207. doi:10.1126/sciadv.1601207
  14. Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang H-M (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Sci Expr 1–4. doi:10.1126/science.aaa5632
  15. Kennedy JJ, Rayner NA, Smith RO, Saunby M, Parker DE (2011) Reassessing biases and other uncertainties in sea-surface temperature observations measured in situ since 1850 part 2: biases and homogenisation. J Geophys Res 116:D14104. doi:10.1029/2010JD015220 CrossRefGoogle Scholar
  16. Kondratyev KY, Varotsos C (1995) Atmospheric greenhouse effect in the context of global climate change. Il Nuovo Cimento C 18(2):123–151CrossRefGoogle Scholar
  17. Lovejoy S (2013) What is climate? EOS 94(1):1–2Google Scholar
  18. Lovejoy S (2014) Scaling fluctuation analysis and statistical hypothesis testing of anthropogenic warming. Clim Dyn 42:2339–2351. doi:10.1007/s00382-014-2128-2 CrossRefGoogle Scholar
  19. Lovejoy S (2015) A voyage through scales, a missing quadrillion and why the climate is not what you expect. Climate Dyn 44:3187–3210 doi:10.1007/s00382-014-2324-0 CrossRefGoogle Scholar
  20. Lovejoy S, de Lima MIP (2015) The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models. Chaos 25:075410. doi:10.1063/1.4927223 CrossRefGoogle Scholar
  21. Lovejoy S, Schertzer D (1986) Scale invariance, symmetries, fractals and stochastic simulations of atmospheric phenomena. Bulletin of the AMS 67:21–32Google Scholar
  22. Lovejoy S, Schertzer D (2010) Towards a new synthesis for atmospheric dynamics: space-time cascades, Atmos Res. doi:10.1016/j.atmosres.2010.01.004Google Scholar
  23. Lovejoy S, Schertzer D (2012a). Low frequency weather and the emergence of the Climate. In: Sharma AS, Bunde A, Baker DN, Dimri VP (eds) Extreme events and natural hazards: the complexity perspective, AGU monographs, Washington DC, pp. 231–254Google Scholar
  24. Lovejoy S, Schertzer D (2012b) Haar wavelets, fluctuations and structure functions: convenient choices for geophysics. Nonlinear Proc Geophys 19:1–14. doi:10.5194/npg-19-1-2012 CrossRefGoogle Scholar
  25. Lovejoy S, Schertzer D (2013) The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Lovejoy S, Schertzer D, Ladoy P (1986) Fractal characterisation of inhomogeneous measuring networks. Nature 319:43–44CrossRefGoogle Scholar
  27. Lovejoy S, Scherter D, Varon D (2013a) How scaling fluctuation analyses change our view of the climate and its models (Reply to R. Pielke sr.: Interactive comment on “Do GCM’s predict the climate... or macroweather?” by S. Lovejoy et al.). Earth Syst Dynam Discuss 3:C1–C12Google Scholar
  28. Lovejoy S, Schertzer D, Varon D (2013b) Do GCM’s predict the climate…. or macroweather? Earth Syst Dynam 4:1–16. doi:10.5194/esd-4-1-2013 CrossRefGoogle Scholar
  29. Lovejoy S, del Rio Amador L, Hébert R (2015a) The Scaling LInear Macroweather model (SLIM): using scaling to forecast global scale macroweather from months to decades. Earth System Dyn Disc 6:489–545 doi:10.5194/esdd-6-489-2015 CrossRefGoogle Scholar
  30. Lovejoy S, del Rio Amador L, Hébert R (2015b) The ScaLIng Macroweather Model (SLIMM): using scaling to forecast global-scale macroweather from months to Decades. Earth Syst Dynam 6:1–22. doi:10.5194/esd-6-1-2015 CrossRefGoogle Scholar
  31. Lovejoy S, del Rio Amador L, Hebert R, de Lima I (2016) Giant natural fluctuation models and anthropogenic warming, Geophys Res Lett. doi:10.1002/2016GL070428 Google Scholar
  32. Lovejoy S, del Rio Amador L, Hébert R (2017) Harnessing butterflies: theory and practice of the Stochastic Seasonal to Interannual Prediction System (StocSIPS). In: Tsonis AA (ed) Nonlinear Advances in Geosciences,. Springer NatureGoogle Scholar
  33. Mann ME (2011) On long range dependence in global surface temperature series. Clim Change 107:267–276CrossRefGoogle Scholar
  34. Mazzarella A, Tranfaglia G (2000) Fractal characterisation of geophysical measuring networks and its implication for an optimal location of additional stations: an application to a rain-gauge network. Theor Appl Climatology 65:157–163 doi:10.1007/s007040070040 CrossRefGoogle Scholar
  35. Mears CA, Wentz FJ, Thorne PW, Bernie D (2011) Assessing uncertainty in estimates of atmospheric temperature changes from MSU and AMSU using a Monte-Carlo estimation technique. J Geophys Res Atmos 116:2156–2202CrossRefGoogle Scholar
  36. Nicolis C (1993) Optimizing the global observational network—a dynamical-approach. J Appl Meteor 32:1751–1759CrossRefGoogle Scholar
  37. Parker DE (2006) A demonstration that large-scale warming is not urban. J Clim 19:2882–2895 doi:10.1175/JCLI3730.1 CrossRefGoogle Scholar
  38. Peterson TC (2003) Assessment of urban versus rural in situ surface temperatures in the contiguous United States: No difference found. J Clim 16:2941–2959CrossRefGoogle Scholar
  39. Pielke RA et al (2007) Unresolved issues with the assessment of multidecadal global land surface temperature trends. J Geophys Res (Atmos). 112, 2156–2202. doi:10.1029/2006JD008229Google Scholar
  40. Pinel J, Lovejoy S, Schertzer D (2014) The horizontal space-time scaling and cascade structure of the atmosphere and satellite radiances. Atmos Resear 140–141:95–114 doi:10.1016/j.atmosres.2013.11.022 CrossRefGoogle Scholar
  41. Rohde R, Muller RA, Jacobsen R, Muller E, Perlmutter S, Rosenfeld A, Wurtele J, Groom D, Wickham C (2013) A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinfor Geostat: An Overview. doi:10.4172/2327-4581.1000101Google Scholar
  42. Rybski D, Bunde A, Havlin S, von Storch H (2006) Long-term persistance in climate and the detection problem. Geophys Resear Lett 33:L06718-06711-06714 doi:10.1029/2005GL025591 Google Scholar
  43. Rypdal K, Østvand L, Rypdal M (2013) Long-range memory in Earth’s surface temperature on time scales from months to centuries. JGR Atmos 118:7046–7062 doi:10.1002/jgrd.50399 Google Scholar
  44. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006). J Clim 21:2283–2293CrossRefGoogle Scholar
  45. Veneziano D, Langousis A (2005) The areal reduction factor: a multifractal analysis. Water Resour Res. doi:10.1029/2004WR003765Google Scholar
  46. Williams CN, Menne M, Lawrimore JH (2012) NCDC Technical Report No. GHCNM-12-02 Modifications to Pairwise Homogeneity Adjustment software to address coding errors and improve run-time efficiency Rep., NOAA, Washington DCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsMcGill UniversityMontrealCanada

Personalised recommendations