Climate Dynamics

, Volume 49, Issue 11–12, pp 3959–3974 | Cite as

Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

  • Constantin Ardilouze
  • L. Batté
  • F. Bunzel
  • D. Decremer
  • M. Déqué
  • F. J. Doblas-Reyes
  • H. Douville
  • D. Fereday
  • V. Guemas
  • C. MacLachlan
  • W. Müller
  • C. Prodhomme
Article

Abstract

Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992–2010 period performed by five different global coupled ocean–atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land–atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.

Keywords

Land-surface initialization Seasonal forecasting Land–atmosphere coupling Multi-model Ensemble forecast 

Notes

Acknowledgements

The authors thank Jeff Knight (Met Office Hadley Centre) for his constructive comments on earlier versions of this manuscript. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007–2013) SPECS project (Grant Agreement Number 308378) and H2020 Framework Programme IMPREX project (Grant Agreement Number 641811). Constantin Ardilouze was also supported by the BSC Centro de Excelencia Severo Ochoa Programme.

Supplementary material

382_2017_3555_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2085 KB)

References

  1. Alessandri A, Navarra A (2008) On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas. Geophys Res Lett. doi: 10.1029/2007gl032415 Google Scholar
  2. Alessandri A, Catalano F, De Felice M, Van Den Hurk B, Doblas Reyes FJ, Boussetta S, Balsamo G, Miller P (2016) Multi-scale enhancement of climate prediction over land by increasing the model sensitivity to vegetation variability in EC-Earth. Clim Dyn (in press)Google Scholar
  3. Baehr J, Piontek R (2014) Ensemble initialization of the oceanic component of a coupled model through bred vectors at seasonal-to-interannual timescales. Geosci Model Dev 7:453–461. doi: 10.5194/gmd-7-453-2014 CrossRefGoogle Scholar
  4. Balsamo G, Albergel C, Beljaars A et al (2015) ERA-Interim/Land: a global land reanalysis dataset. Hydrol Earth Syst Sci 19:389–407. doi: 10.5194/hess-19-389-2015 CrossRefGoogle Scholar
  5. Bellprat O, Kotlarski S, Lüthi D et al (2016) Objective calibration of regional climate models: application over Europe and North America. J Clim 29(2):819–838. doi: 10.1175/JCLI-D-15-0302.1 CrossRefGoogle Scholar
  6. Best MJ, Pryor M, Clark DB, et al (2011) The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci Model Dev Discuss 4:595–640. doi: 10.5194/gmdd-4-595-2011 CrossRefGoogle Scholar
  7. Boisserie M, Decharme B, Descamps L, Arbogast P (2016) Land surface initialization strategy for a global reforecast dataset. QJR Meteorol Soc 142:880–888. doi: 10.1002/qj.2688 CrossRefGoogle Scholar
  8. Boussetta S, Balsamo G, Beljaars A et al (2012) Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: implementation and offline validation. European Centre for Medium-Range Weather Forecasts, Shinfield Park, ReadingGoogle Scholar
  9. Challinor AJ, Slingo JM, Wheeler TR, Doblas-Reyes FJ (2005) Probabilistic simulations of crop yield over western India using the DEMETER seasonal hindcast ensembles. Tellus A 57:498–512. doi: 10.1111/j.1600-0870.2005.00126.x CrossRefGoogle Scholar
  10. Cheruy F, Dufresne JL, Hourdin F, Ducharne A (2014) Role of clouds and land-atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations. Geophys Res Lett 41:6493–6500. doi: 10.1002/2014GL061145 CrossRefGoogle Scholar
  11. Conil S, Douville H, Tyteca S (2008) Contribution of realistic soil moisture initial conditions to boreal summer climate predictability. Clim Dyn 32:75–93. doi: 10.1007/s00382-008-0375-9 CrossRefGoogle Scholar
  12. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  13. Díez E, Primo C, García-Moya JA, Gutiérrez JM et al (2005), Statistical and dynamical downscaling of precipitation over Spain from DEMETER seasonal forecasts. Tellus A 57:409–423. doi: 10.1111/j.1600-0870.2005.00130.x CrossRefGoogle Scholar
  14. Dirmeyer PA (2006) The hydrologic feedback pathway for land–climate coupling. J Hydrometeor 7:857–867. doi: 10.1175/jhm526.1 CrossRefGoogle Scholar
  15. Dirmeyer PA (2011) The terrestrial segment of soil moisture–climate coupling. Geophys Res Lett. doi: 10.1029/2011gl048268 Google Scholar
  16. Dirmeyer PA, Wang Z, Mbuh MJ, Norton HE (2014) Intensified land surface control on boundary layer growth in a changing climate. Geophys Res Lett 41:1290–1294. doi: 10.1002/2013GL058826 CrossRefGoogle Scholar
  17. Doblas-Reyes FJ, García-Serrano J, Lienert F et al (2013) Seasonal climate predictability and forecasting: status and prospects. WIREs Clim Change 4:245–268. doi: 10.1002/wcc.217
  18. Douville H (2009) Relative contribution of soil moisture and snow mass to seasonal climate predictability: a pilot study. Clim Dyn 34:797–818. doi: 10.1007/s00382-008-0508-1
  19. Dutra E, Schär C, Viterbo P, Miranda PMA (2011) Land-atmosphere coupling associated with snow cover. Geophys Res Lett. doi: 10.1029/2011gl048435 Google Scholar
  20. Fischer EM, Seneviratne SI, Vidale PL et al (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Climate 20:5081–5099. doi: 10.1175/jcli4288.1 CrossRefGoogle Scholar
  21. García-Morales MB, Dubus L (2007) Forecasting precipitation for hydroelectric power management: how to exploit GCM’s seasonal ensemble forecasts. Int J Climatol 27:1691–1705. doi: 10.1002/joc.1608 CrossRefGoogle Scholar
  22. Ha KJ, Mahrt L (2003) Radiative and turbulent fluxes in the nocturnal boundary layer. Tellus A 55(4):317–327. doi: 10.1034/j.1600-0870.2003.00031.x CrossRefGoogle Scholar
  23. Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A 57:219–233. doi: 10.1111/j.1600-0870.2005.00103.x Google Scholar
  24. Hagemann S, Stacke T (2014) Impact of the soil hydrology scheme on simulated soil moisture memory. Clim Dyn 44:1731–1750. doi: 10.1007/s00382-014-2221-6 CrossRefGoogle Scholar
  25. Harris I, Jones P, Osborn T, Lister D (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642. doi: 10.1002/joc.3711 CrossRefGoogle Scholar
  26. Hazeleger W, Wang X, Severijns C et al (2011) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629. doi: 10.1007/s00382-011-1228-5 CrossRefGoogle Scholar
  27. Hirschi M, Seneviratne SI, Alexandrov V et al (2010) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4:17–21. doi: 10.1038/ngeo1032 CrossRefGoogle Scholar
  28. Hirschi M, Mueller B, Dorigo W, Seneviratne S (2014) Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: the role of surface vs. root-zone soil moisture variability. Remote Sens Environ 154:246–252. doi: 10.1016/j.rse.2014.08.030 CrossRefGoogle Scholar
  29. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett. doi: 10.1029/2009gl040000 Google Scholar
  30. Hurk BVD, Doblas-Reyes F, Balsamo G et al (2010) Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Clim Dyn 38:349–362. doi: 10.1007/s00382-010-0956-2
  31. Hurk BVD, Kim H, Krinner G et al (2016) The land surface, snow and soil moisture model intercomparison program (LS3MIP): aims, set-up and expected outcome. Geosci Model Dev Discuss 1–41. doi: 10.5194/gmd-2016-72
  32. Klein SA, Jiang X, Boyle J, Malyshev S, Xie S (2006) Diagnosis of the summertime warm and dry bias over the U.S. Southern great plains in the GFDL climate model using a weather forecasting approach. Geophys Res Lett 33:L18805. doi: 10.1029/2006gl027567 CrossRefGoogle Scholar
  33. Koster RD (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140. doi: 10.1126/science.1100217 CrossRefGoogle Scholar
  34. Koster RD, Sud YC, Guo Z et al (2006) GLACE: the global land–atmosphere coupling experiment. Part I: Overview. J Hydrometeor 7:590–610. doi: 10.1175/jhm510.1 CrossRefGoogle Scholar
  35. Koster RD, Chang Y, Schubert SD (2014) A mechanism for land–atmosphere feedback involving planetary wave structures. J Climate 27:9290–9301. doi: 10.1175/jcli-d-14-00315.1 CrossRefGoogle Scholar
  36. Lorenz R, Jaeger EB, Seneviratne SI (2010) Persistence of heat waves and its link to soil moisture memory. Geophys Res Lett 37:L09703. doi:  10.1029/2010GL042764
  37. Lyon B, Dole RM (1995) A diagnostic comparison of the 1980 and 1988 U.S. summer heat wave-droughts. J Clim 8:1658–1675. doi: 10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2 CrossRefGoogle Scholar
  38. Ma H-Y, Xie S, Klein SA et al (2014) On the correspondence between mean forecast errors and climate errors in CMIP5 models. J Clim 27:1781–1798. doi: 10.1175/jcli-d-13-00474.1 CrossRefGoogle Scholar
  39. Maclachlan C, Arribas A, Peterson KA et al (2014) Global seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. QJR Meteorol Soc 141:1072–1084. doi: 10.1002/qj.2396 CrossRefGoogle Scholar
  40. Mahrt L (1999) Stratified atmospheric boundary layers. Boundary Layer Meteorol 90:375–396. doi: 10.1023/A:1001765727956 CrossRefGoogle Scholar
  41. Masson V, Moigne PL, Martin E et al (2013) The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci Model Dev 6:929–960. doi: 10.5194/gmd-6-929-2013 CrossRefGoogle Scholar
  42. Materia S, Borrelli A, Bellucci A et al (2014) Impact of atmosphere and land surface initial conditions on seasonal forecasts of global surface temperature. J Clim 27:9253–9271. doi: 10.1175/jcli-d-14-00163.1 CrossRefGoogle Scholar
  43. McNider RT, Christy JR, Biazar A (2010) A stable boundary layer perspective on global temperature trends. IOP Conf Ser Earth Environ Sci 13:012003 doi: 10.1088/1755-1315/13/1/012003 CrossRefGoogle Scholar
  44. Mearns LO, Arritt R, Biner S et al (2012) The North American regional climate change assessment program: overview of phase I results. Bull Am Meteor Soc 93:1337–1362. doi: 10.1175/BAMS-D-11-00223.1 CrossRefGoogle Scholar
  45. Mueller ND, Butler EE, Mckinnon KA et al (2015) Cooling of US Midwest summer temperature extremes from cropland intensification. Nat Clim Change 6:317–322. doi: 10.1038/nclimate2825 CrossRefGoogle Scholar
  46. Orsolini YJ, Senan R, Balsamo G et al (2013) Impact of snow initialization on sub-seasonal forecasts. Clim Dyn 41:1969–1982. doi: 10.1007/s00382-013-1782-0 CrossRefGoogle Scholar
  47. Orth R, Seneviratne SI (2012) Analysis of soil moisture memory from observations in Europe. J Geophys Res. doi: 10.1029/2011jd017366 Google Scholar
  48. Palmer TN, Doblas-Reyes FJ, Hagedorn R et al (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Amer Meteor Soc 85(6):853–872. doi:  10.1175/BAMS-85-6-853
  49. Peings Y, Douville H, Alkama R, Decharme B (2010) Snow contribution to springtime atmospheric predictability over the second half of the twentieth century. Clim Dyn 37:985–1004. doi: 10.1007/s00382-010-0884-1 CrossRefGoogle Scholar
  50. Prodhomme C, Doblas-Reyes F, Bellprat O, Dutra E (2016) Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Clim Dyn. doi: 10.1007/s00382-015-2879-4 Google Scholar
  51. Quan X, Hoerling M, Whitaker J et al (2006) Diagnosing sources of U.S. seasonal forecast skill. J Clim 19:3279–3293. doi: 10.1175/jcli3789.1 CrossRefGoogle Scholar
  52. Quesada B, Vautard R, Yiou P et al (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Change 2:736–741. doi: 10.1038/nclimate1536 CrossRefGoogle Scholar
  53. Raddatz TJ, Reick CH, Knorr W et al (2007) Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Clim Dyn 29:565–574. doi: 10.1007/s00382-007-0247-8 CrossRefGoogle Scholar
  54. Saha S, Nadiga S, Thiaw C et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517. doi: 10.1175/jcli3812.1 CrossRefGoogle Scholar
  55. Schneider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, Internet Publication, vol 112. ftp://ftp.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_2008.pdf. Accessed 25 May 2016
  56. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209. doi: 10.1038/nature05095 CrossRefGoogle Scholar
  57. Seneviratne SI, Corti T, Davin EL et al (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. doi: 10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  58. Seneviratne SI, Wilhelm M, Stanelle T et al (2013) Impact of soil moisture-climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys Res Lett 40:5212–5217. doi: 10.1002/grl.50956 CrossRefGoogle Scholar
  59. Stéfanon M, Drobinski P, D’Andrea F et al (2013) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim Dyn 42:1309–1324. doi: 10.1007/s00382-013-1794-9 CrossRefGoogle Scholar
  60. Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87:245–251. doi: 10.1037/0033-2909.87.2.245 CrossRefGoogle Scholar
  61. Stevens B, Giorgetta M, Esch M et al (2013) Atmospheric component of the MPI-M Earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172. doi: 10.1002/jame.20015 CrossRefGoogle Scholar
  62. Stockdale TN, Anderson DLT, Balmaseda MA et al (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455–471. doi: 10.1007/s00382-010-0947-3 CrossRefGoogle Scholar
  63. Thomson MC, Doblas-Reyes FJ, Mason SJ et al (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579. doi: 10.1038/nature04503 CrossRefGoogle Scholar
  64. Voldoire A, Sanchez-Gomez E, Mélia DSY et al (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. doi: 10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  65. Waters J, Lea DJ, Martin MJ et al (2014) Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. QJR Meteorol Soc 141:333–349. doi: 10.1002/qj.2388 CrossRefGoogle Scholar
  66. Weedon GP, Balsamo G, Bellouin N et al (2014) The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour Res 50:7505–7514. doi: 10.1002/2014wr015638 CrossRefGoogle Scholar
  67. Weiss M, Hurk BVD, Haarsma R, Hazeleger W (2012) Impact of vegetation variability on potential predictability and skill of EC-Earth simulations. Clim Dyn 39:2733–2746. doi: 10.1007/s00382-012-1572-0 CrossRefGoogle Scholar
  68. Whan K, Zscheischler J, Orth R et al (2015) Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim Extremes 9:57–67. doi: 10.1016/j.wace.2015.05.001 CrossRefGoogle Scholar
  69. Xu L, Dirmeyer P (2011) Snow–atmosphere coupling strength in a global atmospheric model. Geophys Res Lett 38:L13401. doi: 10.1029/2011GL048049 CrossRefGoogle Scholar
  70. Yoon J-H, Leung LR (2015) Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States. Geophys Res Lett 42:5005–5013. doi: 10.1002/2015gl064139 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Constantin Ardilouze
    • 1
  • L. Batté
    • 1
  • F. Bunzel
    • 2
  • D. Decremer
    • 3
  • M. Déqué
    • 1
  • F. J. Doblas-Reyes
    • 4
    • 6
  • H. Douville
    • 1
  • D. Fereday
    • 5
  • V. Guemas
    • 1
    • 4
  • C. MacLachlan
    • 5
  • W. Müller
    • 2
  • C. Prodhomme
    • 4
  1. 1.CNRM UMR 3589, Météo-France/CNRSToulouseFrance
  2. 2.Max Planck Institute for MeteorologyHamburgGermany
  3. 3.European Center for Medium range Weather ForecastsReadingUK
  4. 4.BSC-CNSBarcelonaSpain
  5. 5.Met Office Hadley CentreExeterUK
  6. 6.ICREABarcelonaSpain

Personalised recommendations