Climate Dynamics

, Volume 49, Issue 11–12, pp 3851–3876 | Cite as

Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe

  • Ha Thi Minh Ho-Hagemann
  • Matthias Gröger
  • Burkhardt Rockel
  • Matthias Zahn
  • Beate Geyer
  • H. E. Markus Meier
Article

Abstract

This study introduces a new approach to investigate the potential effects of air-sea coupling on simulated precipitation inland over Central Europe. We present an inter-comparison of two regional climate models (RCMs), namely, the COSMO-CLM (hereafter CCLM) and RCA4 models, which are configured for the EURO-CORDEX domain in the coupled and atmosphere-only modes. Two versions of the CCLM model, namely, 4.8 and 5.0, join the inter-comparison being almost two different models while providing pronouncedly different summer precipitation simulations because of many changes in the dynamics and physics of CCLM in version 5.0. The coupling effect on the prominent summer dry bias over Central Europe is analysed using seasonal (JJA) mean statistics for the 30-year period from 1979 to 2009, with a focus on extreme precipitation under specific weather regimes. The weather regimes are compared between the coupled and uncoupled simulations to better understand the mechanism of the coupling effects. The comparisons of the coupled systems with the atmosphere-only models show that coupling clearly reduces the dry bias over Central Europe for CCLM 4.8, which has a large dry summer bias, but not for CCLM 5.0 and RCA4, which have smaller dry biases. This result implies that if the atmosphere-only model already yields reasonable summer precipitation over Central Europe, not much room for improvement exists that can be caused by the air-sea coupling over the North Sea and the Baltic Sea. However, if the atmosphere-only model shows a pronounced summer dry bias because of a lack of moisture transport from the seas into the region, the considered coupling may create an improved simulation of summer precipitation over Central Europe, such as for CCLM 4.8. For the latter, the benefit of coupling varies over the considered timescales. The precipitation simulations that are generated by the coupled system COSTRICE 4.8 and the atmosphere-only CCLM 4.8 are mostly identical for the summer mean. However, the COSTRICE simulations are generally more accurate than the atmosphere-only CCLM simulations if extreme precipitation is considered, particularly under Northerly Circulation conditions, in which the airflow from the North Atlantic Ocean passes the North Sea in the coupling domain. The air-sea feedback (e.g., wind, evaporation and sea surface temperature) and land-sea interactions are better reproduced with the COSTRICE model system than the atmosphere-only CCLM and lead to an improved simulation of large-scale moisture convergence from the sea to land and, consequently, increased heavy precipitation over Central Europe.

Keywords

Regional climate model Central Europe EURO-CORDEX Dry bias Extreme precipitation Air-sea coupling 

Notes

Acknowledgements

This study was supported by funding from the German project REKLIM. The research that was presented in this study is a part of the Baltic Earth Programme (Earth System Science for the Baltic Sea Region; see http://www.baltic-earth.eu), the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) within the project “Impact of changing climate on circulation and biogeochemical cycles of the integrated North Sea and Baltic Sea system” (Grant no. 214-2010-1575) and Stockholm University’s Strategic Marine Environmental Research Funds Baltic Ecosystem Adaptive Management (BEAM). Matthias Zahn was supported through the Cluster of Excellence ‘‘CliSAP’’ (EXC177), Universität Hamburg, which was funded through the German Science Foundation (DFG). The German Climate Computing Center (DKRZ) provided the computer hardware for the Limited Area Modelling simulations in the project “Regional Atmospheric Modelling”. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data that were provided by the ECA&D project (http://www.ecad.eu). We appreciate the use of the ERA-Interim reanalysis product that was provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). We acknowledge the NOAA High Resolution SST data that were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/. We express our thanks to Peter Hoffmann (Potsdam Institute for Climate Impact Research-PIK) for introducing and providing the weather type data from the German Weather Service (DWD).

References

  1. Aldrian E, Sein D, Jacob D, Dumenil Gates L, Podzun R (2005) Modeling Indonesian rainfall with a coupled regional model. Clim Dyn 25:1–17CrossRefGoogle Scholar
  2. Anders I, Rockel B (2009) The influence of prescribed soil type distribution on the representation of present climate in a regional model. Clim Dyn 33:177–186CrossRefGoogle Scholar
  3. Artale V, Calmanti S, Carillo A et al. (2009) An atmosphere-ocean regional climate model for the mediterranean area: assessment of a present climate simulation. Clim Dyn 35:721–740CrossRefGoogle Scholar
  4. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF Ocean Reanalysis ORAS4. Q J R Meteorol Soc. doi:10.1002/qj.2063 Google Scholar
  5. Bender MA, Ginis I, Kurihara Y (1993) Numerical simulations of hurricane-ocean interaction with a high resolution coupled model. J Geophys Res 98:23245–23263CrossRefGoogle Scholar
  6. Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo PA (1996) The land-surface atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res 101:7209–7225CrossRefGoogle Scholar
  7. Boberg F, Berg P, Thejll P, Gutowski W, Christensen J (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35(7–8):1509–1520. doi:10.1007/s00382-009-0683-8 CrossRefGoogle Scholar
  8. Casulli V, Cattani E (1994) Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow. Comput Math Appl 27:99–112CrossRefGoogle Scholar
  9. Casulli V, Stelling GS (1998) Numerical simulation of 3D quasi-hydrostatic, free-surface flows. J Hydraul Engrg 124:678–686CrossRefGoogle Scholar
  10. Champeaux JL, Masson V, Chauvin F (2005) ECOCLIMAP: a global database of land surface parameters at 1 km resolution. Meteorol Appl 12:29–32. doi:10.1017/S1350482705001519 CrossRefGoogle Scholar
  11. Christensen J, Boberg F, Christensen O, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. doi:10.1029/2008GL0356 CrossRefGoogle Scholar
  12. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  13. Dieterich C, Schimanke S, Wang S et al (2013) Evaluation of the SMHI coupled atmosphere-ice-ocean model RCA4-NEMO. SMHI Report Oceanography, vol 47Google Scholar
  14. Dirmeyer P, Koster R, Guo ZAD (2006) Do global models properly represent the feedback between land and atmosphere? J Hydrometeorol 7:1177–1198CrossRefGoogle Scholar
  15. Doms GJF, Heise E, Herzog H-J et al (2011) A Description of the Nonhydrostatic Regional COSMO Model. Part II: physical parameterization. Tech. Rep. Deutscher Wetterdienst. http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf
  16. Döscher R, Willén U, Jones C et al (2002) The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192Google Scholar
  17. Folland CK, Knight J, Linderholm HW et al (2009) The summer North Atlantic Oscillation: past, present, and future. J Clim 22(5):1082–1103. doi:10.1175/2008JCLI2459.1 CrossRefGoogle Scholar
  18. Geyer B (2014) High-resolution atmospheric reconstruction for Europe 1948–2012: coastDat2. Earth Syst Sci Data 6:147–164. doi:10.5194/essd-6-147-2014 CrossRefGoogle Scholar
  19. Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophys Res Lett 37:L13804CrossRefGoogle Scholar
  20. Giorgi F (2006) Regional climate modeling: status and perspectives. J Phys IV 139(1):101–118. doi:10.1051/jp4:2006139008 Google Scholar
  21. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  22. Greatbatch RJ (2000) The North Atlantic Oscillation. Stoch Environ Res Risk Assess 14 (4 + 5):213–242CrossRefGoogle Scholar
  23. Gröger M, Dieterich C, Meier HEM, Schimanke S (2015) Thermal air-sea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf. Tellus A Dyn Meteorol Oceanogr 67(1):26911. doi:10.3402/tellusa.v67.26911 CrossRefGoogle Scholar
  24. Gustafsson N, Nyberg L, Omstedt A (1998) Coupling of a high-resolution atmospheric model and an ocean model for the Baltic Sea. Mon Weather Rev 126:2822–2846CrossRefGoogle Scholar
  25. Hagedorn R, Lehmann A, Jacob D (2000) A coupled high resolution atmosphere-ocean model for the BALTEX region. Meteorol Z 9:7–20Google Scholar
  26. Hagemann S, Botzet M, Machenhauer B (2001) The summer drying problem over south-eastern Europe: sensitivity of the limited area model HIRHAM4 to improvements in physical parameterization and resolution. Phys Chem Earth Part B 26:391–396CrossRefGoogle Scholar
  27. Hagemann S, Machenhauer B, Jones R et al (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23:547–567. doi:10.1007/s00382-004-0444-7 CrossRefGoogle Scholar
  28. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol. doi:10.1002/joc.3711 Google Scholar
  29. Haylock MR, Hofstra N, Klein Tank AMG et al (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113: D20119. doi:10.1029/2008JD010201 CrossRefGoogle Scholar
  30. Hewitt HT, Copsey D, Culverwell ID et al (2011) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev 4:223–253. doi:10.5194/gmd-4-223-2011 CrossRefGoogle Scholar
  31. Ho-Hagemann HTM, Rockel B, Kapitza H, Geyer B, Meyer E (2013) COSTRICE—an atmosphere—ocean—sea ice model coupled system using OASIS3. HZG Report 2013-5Google Scholar
  32. Ho-Hagemann HTM, Hagemann S, Rockel B (2015) On the role of soil moisture in the generation of heavy rainfall during the Oder flood event in July 1997. Tellus A Dyn Meteorol Oceanogr 67(1):28661. doi:10.3402/tellusa.v67.28661 CrossRefGoogle Scholar
  33. Hunke EC, Lipscomb WH, Turner AK, Jeffery N, Elliott S (2013) CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.0 LA-CC-06–012. Los Alamos National Laboratory, USAGoogle Scholar
  34. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  35. Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23:665–668CrossRefGoogle Scholar
  36. James PM (2006) An assessment of European synoptic variability in Hadley Centre Global Environmental models based on an objective classification of weather regimes. Clim Dyn 27:215–231. doi:10.1007/s00382-006-0133-9 CrossRefGoogle Scholar
  37. James PM (2007) An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theor Appl Climatol 88:17–42CrossRefGoogle Scholar
  38. James P, Stohl A, Spichtinger N, Eckhardt S, Forster C (2004) Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions. Nat Hazards Earth Syst Sci 4:733–746. doi:10.5194/nhess-4-733-2004 CrossRefGoogle Scholar
  39. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  40. Kistler R, Kalnay E, Collins W et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268CrossRefGoogle Scholar
  41. Koster RD, Dirmeyer PA, Guo Z et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140CrossRefGoogle Scholar
  42. Kotlarski S, Keuler K, Christensen OB et al (2014) Regional climate modelling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333CrossRefGoogle Scholar
  43. Kupiainen M, Jansson C, Samuelsson P et al (2014) Rossby Centre regional atmospheric model, RCA4. Rossby Center News Letter. Online at: http://www.smhi.se/en/Research/Research-departments/climate-research-rossby-centre2-552/1.16562
  44. Larsen MAD, Christensen JH, Drews M, Butts MB, Refsgaard JC (2016) Local control on precipitation in a fully coupled climate-hydrology model. Sci Rep 6:22927. doi:10.1038/srep22927 CrossRefGoogle Scholar
  45. Li LZX (2006) Atmospheric GCM response to an idealized anomaly of the Mediterranean sea surface temperature. Clim Dyn 27:543–552CrossRefGoogle Scholar
  46. Machenhauer B, Windelband M, Botzet M et al (1998) Validation and analysis of regional present-day climate and climate simulations over Europe. MPI Report. Max-Planck-Inst., Hamburg, GermanyGoogle Scholar
  47. Madec G (2008) NEMO ocean engine. Tech Rep 27. Note du Pole de modélisation, Institut Pierre-Simon Laplace 1280 (IPSL), FranceGoogle Scholar
  48. Maykut GA, Untersteiner N (1971) Some results from a time dependent thermodynamic model of sea ice. J Geophys Res Oceans Atmos 76:1550–1575. doi:10.1029/JC076i006p01550 CrossRefGoogle Scholar
  49. Meehl GA (1994) Coupled land-ocean-atmosphere processes and south Asian monsoon variability. Science 266:263–267. doi:10.1126/science.266.5183.263 CrossRefGoogle Scholar
  50. Meier HEM, Höglund A, Döscher R, Andersson H, Löptien U, Kjellström E (2011) Quality assessment of atmospheric surface fields over the Baltic Sea of an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia 53:193–227CrossRefGoogle Scholar
  51. Muskulus M, Jacob D (2005) Tracking cyclones in regional model data: the future of Mediterranean storms. Adv Geosci 2:13–19. doi:10.5194/adgeo-2-13-2005 CrossRefGoogle Scholar
  52. Nabat P, Somot S, Mallet M et al (2015) Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Clim Dyn 44:1127. doi:10.1007/s00382-014-2205-6 CrossRefGoogle Scholar
  53. Pham VT, Brauch J, Dieterich C, Frueh B, Ahrens B (2014) New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: assessing air temperature sensitivity over the North and Baltic Seas. Oceanologia 56 (2). doi:10.5697/oc.56-2.167
  54. Räisänen J, Hansson U, Ullerstig U et al (2004) European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31CrossRefGoogle Scholar
  55. Ratnam JV, Giorgi F, Kaginalkar A, Cozzini S (2009) Simulation of the Indian monsoon using the RegCM3-ROMS regional coupled model. Clim Dyn 33:119–139CrossRefGoogle Scholar
  56. Reynolds RW, Smith TM, Liu C et al (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  57. Rockel B, Will A, Hense A (eds) (2008) Special issue Regional climate modelling with COSMO-CLM (CCLM). Meteorol Z 17(4):347–348Google Scholar
  58. Rummukainen M, Räisänen J, Bringfelt B et al (2001) A regional climate model for northern. Europe: model description results from the downscaling of two GCM control simulations. Clim Dyn 17:339–359CrossRefGoogle Scholar
  59. Samuelsson P et al (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A Dyn Meteorol Oceanogr 63(1):4–23. doi:10.1111/j.1600-0870.2010.00478.x Google Scholar
  60. Schrodin R, Heise E (2001) The multi-layer-version of the DWD soil model TERRA/LM, Consortium for Small-Scale Modelling (COSMO). Tech. Rep., vol 2Google Scholar
  61. Schrum C (2016) Regional Climate modeling and air-sea coupling. Climate Science, Oxford Research Encyclopdias, doi:10.1093/acrefore/9780190228620.013.3
  62. Schrum C, Huebner U, Jacob D, Podzum R (2003) A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Clim Dyn 21:131–151CrossRefGoogle Scholar
  63. Seneviratne SI, Pal JS, Eltahir EAB, Schär C (2002) Summer dryness in a warmer climate: a process study with a regional climate model. Clim Dyn 20:69–85CrossRefGoogle Scholar
  64. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443(7108):205–209CrossRefGoogle Scholar
  65. Seneviratne SI, Stöckli R (2008) The role of land-atmosphere interactions for climate variability in Europe. In: Brönnimann et al (eds) Climate variability and extremes during the past 100 years, Adv Global Change Res 33, Springer (Book chapter)Google Scholar
  66. Seneviratne SI, Corti T, Davin E, Hirschi M, Jaeger EB et al (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161CrossRefGoogle Scholar
  67. Shrestha P, Sulis M, Masbou M, Kollet S, Simmer C (2014) A scale-consistent terrestrial systems modeling platform based on COSMO, CLM, and Parflow. Mon Weather Rev 142:3466–3483CrossRefGoogle Scholar
  68. Sodemann H, Wernli H, Schwierz C (2009) Sources of water vapour contributing to the Elbe flood in August 2002—a tagging study in a mesoscale model. Q J Roy Meteorol Soc 135:205–223. doi:10.1002/qj.374 CrossRefGoogle Scholar
  69. Somot A, Sevault F, Deque M, Crepon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Global Planet Change Elsevier 63 (2–3):112–126CrossRefGoogle Scholar
  70. Stohl A, James P (2004) A Lagrangian analysis of the atmospheric branch of the global water cycle, part I: method description, validation, and demonstration for the August 2002 flooding in Central Europe. J Hydrometeorol 5:656–678. doi:10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2 CrossRefGoogle Scholar
  71. Tian T, Boberg F, Bøssing Christenssen O et al (2013) Resolved complex coastlines and land_sea contrasts in a high-resolution regional climate model: a comparative study using prescribed and modelled SSTs. Tellus A Dyn Meteorol Oceanogr 65(1):19951. doi:10.3402/tellusa.v65i0.19951 CrossRefGoogle Scholar
  72. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 CrossRefGoogle Scholar
  73. Turner AK, Hunke EC, Bitz CM (2013) Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling. J Geophys Res Oceans 118:2279–2294. doi:10.1002/jgrc.20171 CrossRefGoogle Scholar
  74. U.S. Geological Survey (2004) Global digital elevation model (gtopo30). Technical Report. EROS Data Center Distributed Active Archive Center (EDC DAAC)Google Scholar
  75. Untersteiner N (1964) Calculations of temperature regime and heat budget of sea ice in the central Arctic. J Geophys Res Atmospheres 69(22):4755–4766. doi:10.1029/JZ069i022p04755 CrossRefGoogle Scholar
  76. Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qJ04.176 CrossRefGoogle Scholar
  77. Valcke S, Craig T, Coquart L (2013) OASIS3-MCT User Guide, OASIS3-MCT 2.0. Technical Report, TR/CMGC/13/17, CERFACS/CNRS SUC URA No 1875, Toulouse, FranceGoogle Scholar
  78. van Bebber WJ (1891) Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der Deutschen Seewarte fur den Zeitraum von 1870–1890. Meteorol Z 8:361–366Google Scholar
  79. van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:W09525. doi:10.1029/2010WR009127 Google Scholar
  80. Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G, Maqueda M (2009) Simulating the mass balance and salinity af arctic and antarctic sea ice. Ocean Model 27:33–53CrossRefGoogle Scholar
  81. Vidale PL, Lüthi D, Frei C, Seneviratne SI, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108(D18):4586. doi:10.1029/2002JD002810 CrossRefGoogle Scholar
  82. von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673CrossRefGoogle Scholar
  83. Wang S, Dieterich C, Döscher R, Höglund A, Hordoir R, Meier HEM, Samuelsson P, Schimanke S (2015) Development and evaluation of a new regional coupled atmosphere-ocean model RCA4-NEMO and application for future scenario experiments. Tellus A Dyn Meteorol Oceanogr 67(1):24284. doi:10.3402/tellusa.v67.24284 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.Swedish Meteorological and Hydrological InstituteNorrköpingSweden
  3. 3.Leibniz Institute for Baltic Sea ResearchRostock-WarnemündeGermany

Personalised recommendations