Climate Dynamics

, Volume 49, Issue 11–12, pp 3799–3811 | Cite as

A possible explanation for the divergent projection of ENSO amplitude change under global warming

  • Lin Chen
  • Tim Li
  • Yongqiang Yu
  • Swadhin K. Behera


The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.


ENSO Global warming Ocean thermocline response to wind anomaly ENSO meridional structure Subtropical cell 



We would like to thank Dr. Lu Wang and anonymous reviewers for insightful suggestions and comments. We acknowledge the PCMDI for providing the CMIP5 model data, which may be obtained from the website of This work was supported by NSFC project 41630423, National 973 project 2015CB453200, NSF AGS-1565653, NSFC 41475084, NRL grant N00173-161G906, Jiangsu NSF project BK20150062, Jiangsu Shuang-Chuang Team (R2014SCT001), NSFC Grant 41376002/41606011/41530426, CAS Strategic Priority Project XDA11010105, and by the IPRC that is sponsored by Japan Agency for Marine-Earth Science and Technology (JAMSTEC). This is SOEST contribution number 9938, IPRC contribution number 1237, and ESMC contribution 150.


  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112. doi: 10.1029/2006JC003798
  2. Cai W et al (2014) Increasing frequency of extreme El Nino events due to greenhouse warming. Nat Clim Change 4:111–116CrossRefGoogle Scholar
  3. Cai W et al (2015a) ENSO and greenhouse warming. Nature Clim Change 5:849–859 doi: 10.1038/nclimate2743 CrossRefGoogle Scholar
  4. Cai W et al (2015b) Increased frequency of extreme La Niña events under greenhouse warming. Nat Clim Change 5:132–137CrossRefGoogle Scholar
  5. Chang P, Philander SG (1994) A coupled ocean-atmosphere instability of relevance to the seasonal cycle. J Atmos Sci 51:3627–3648CrossRefGoogle Scholar
  6. Chen L, Li T, Yu Y (2015) Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J Clim 28:3250–3274. doi: 10.1175/jcli-d-14-00439.1 CrossRefGoogle Scholar
  7. Chung P-H, Li T (2013) Interdecadal relationship between the mean state and El Niño Types*. J Clim 26:361–379CrossRefGoogle Scholar
  8. Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci 3:391–397CrossRefGoogle Scholar
  9. DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee S-K (2009) Climate response of the equatorial Pacific to global warming. J Clim 22:4873–4892CrossRefGoogle Scholar
  10. Ding R, Li JP (2012) Influences of ENSO teleconnection on the persistence of sea surface temperature in the Tropical Indian Ocean. J Clim 25:8177–8195. doi: 10.1175/JCLI-D-11-00739.1 CrossRefGoogle Scholar
  11. Feng J, Li JP (2011) Influence of El Niño Modoki on spring rainfall over south China. J Geophys Res Atmos 116:D13102. doi: 10.1029/2010jd015160 CrossRefGoogle Scholar
  12. Feng J, Li JP (2013) Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation. J Clim 26:4773–4789. doi: 10.1175/JCLI-D-12-00298.1 CrossRefGoogle Scholar
  13. Feng J, Li J, Zhu J, Liao H (2016) Influences of El Niño Modoki event 1994/1995 on aerosol concentrations over southern China. J Geophys Res Atmos 121:2015JD023659. doi: 10.1002/2015jd023659 CrossRefGoogle Scholar
  14. Guilyardi E et al (2009) Understanding El Nino in ocean–atmosphere general circulation models. Bull Amer Meteor Soc 90:325–340CrossRefGoogle Scholar
  15. Ham Y-G, Kug J-S (2016) ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the twentieth century. Geophys Res Lett 43. doi: 10.1002/2015gl066864 Google Scholar
  16. Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  17. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  18. Karori MA, Li JP, Jin F-F (2013) The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over Southeast China. J Clim 26:4567–4582. doi: 10.1175/JCLI-D-12-00324.1 CrossRefGoogle Scholar
  19. Kim ST, Cai W, Jin F-F, Santoso A, Wu L, Guilyardi E, An S-I (2014) Response of El Nino sea surface temperature variability to greenhouse warming. Nat Clim Change 4:786–790 doi: 10.1038/nclimate2326 CrossRefGoogle Scholar
  20. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  21. Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705. doi: 10.1029/2005gl022738 CrossRefGoogle Scholar
  22. Latif M, Keenlyside N (2009) El Niño/Southern Oscillation response to global warming. Proc Natl Acad Sci 106:20578–20583CrossRefGoogle Scholar
  23. Li T (1997) Phase transition of the El Niño-southern oscillation: a stationary SST mode. J Atmos Sci 54:2872–2887CrossRefGoogle Scholar
  24. Li T, Zhang Y, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:25-21-25-24Google Scholar
  25. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436CrossRefGoogle Scholar
  26. Liu L, Yu W, Li T (2011) Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models*. J Clim 24:4941–4958CrossRefGoogle Scholar
  27. Liu H, Lin P, Yu Y, Zhang X (2012) The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorol Sin 26:318–329CrossRefGoogle Scholar
  28. McCreary JP Jr, Lu P (1994) Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J Phys Oceanogr 24:466–497CrossRefGoogle Scholar
  29. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745. doi: 10.1126/science.1132588 CrossRefGoogle Scholar
  30. Merryfield WJ (2006) Changes to ENSO under CO2 doubling in a multimodel ensemble. J Clim 19:4009–4027CrossRefGoogle Scholar
  31. Neelin JD (1991) The slow sea surface temperature mode and the fast-wave limit: analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J Atmos Sci 48:584–606CrossRefGoogle Scholar
  32. Philander SG (1990) El Niño, La Niña, and the southern oscillation. Academic Press, LondonGoogle Scholar
  33. Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El[thinsp]Nino and related precipitation variability. Nature 502:541–545. doi: 10.1038/nature12580 CrossRefGoogle Scholar
  34. Rashid HA, Hirst AC, Marsland SJ (2016) An atmospheric mechanism for ENSO amplitude changes under an abrupt quadrupling of CO2 concentration in CMIP5 models. Geophys Res Lett 43:2015GL066768. doi: 10.1002/2015gl066768 CrossRefGoogle Scholar
  35. Sadekov AY, Ganeshram R, Pichevin L, Berdin R, McClymont E, Elderfield H, Tudhope AW (2013) Palaeoclimate reconstructions reveal a strong link between El Nino-Southern Oscillation and Tropical Pacific mean state. Nat Commun 4 doi: 10.1038/ncomms3692 Google Scholar
  36. Stevenson SL (2012) Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys Res Lett 39:L17703. doi: 10.1029/2012gl052759 CrossRefGoogle Scholar
  37. Su J, Zhang R, Li T, Rong X, Kug J, Hong C-C (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim 23:605–617CrossRefGoogle Scholar
  38. Su J, Li T, Zhang R (2014) The initiation and developing mechanisms of central Pacific El Niños. J Clim 27:4473–4485CrossRefGoogle Scholar
  39. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485CrossRefGoogle Scholar
  40. Van Oldenborgh GJ, Philip S, Collins M (2005) El Niño in a changing climate: A multi-model study. Ocean Sci Discuss 1:81–95CrossRefGoogle Scholar
  41. Wang B, Li T (1993) A simple tropical atmosphere model of relevance to short-term climate variations. J Atmos Sci 50:260–284CrossRefGoogle Scholar
  42. Wang C, Weisberg RH (1994) On the “Slow Mode” mechanism in ENSO-related coupled ocean–atmosphere models. J Climate 7:1657–1667CrossRefGoogle Scholar
  43. Xiang B, Wang B, Li T (2013) A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Clim Dyn 41:327–340CrossRefGoogle Scholar
  44. Xie SP, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall*. J Clim 23:966–986CrossRefGoogle Scholar
  45. Yeh S-W, Kirtman BP (2007) ENSO amplitude changes due to climate change projections in different coupled models. J Clim 20:203–217CrossRefGoogle Scholar
  46. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  47. Zelle H, van Oldenborgh GJ, Burgers G, Dijkstra H (2005) El Niño and greenhouse warming: results from ensemble simulations with the NCAR CCSM. J Clim 18:4669–4683CrossRefGoogle Scholar
  48. Zhang W, Jin F-F (2012) Improvements in the CMIP5 simulations of ENSO-SSTA meridional width. Geophys Res Lett. doi: 10.1029/2012GL053588 Google Scholar
  49. Zhang L, Li T (2014) A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J Clim 27:8413–8421. doi: 10.1175/jcli-d-14-00346.1 CrossRefGoogle Scholar
  50. Zhang W, Li J, Jin FF (2009) Spatial and temporal features of ENSO meridional scales. Geophys Res Lett 36. doi: 10.1029/2009GL038672
  51. Zhang W, Jin F-F, Zhao J-X, Qi L, Ren H-L (2013a) The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in Southwest China. J Clim 26:8392–8405. doi: 10.1175/JCLI-D-12-00851.1 CrossRefGoogle Scholar
  52. Zhang W, Jin F-F, Zhao J-X, Li J (2013b) On the bias in simulated ENSO SSTA meridional widths of CMIP3 models. J Clim 26:3173–3186CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Lin Chen
    • 1
    • 2
    • 3
    • 4
  • Tim Li
    • 1
    • 2
  • Yongqiang Yu
    • 3
    • 4
  • Swadhin K. Behera
    • 5
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science and TechnologyNanjingChina
  2. 2.International Pacific Research Center (IPRC), and Department of Atmospheric Sciences, SOESTUniversity of Hawaii at ManoaHonoluluUSA
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS)Beijing 100029China
  4. 4.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.Application LaboratoryJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan

Personalised recommendations