Novel three-pattern decomposition of global atmospheric circulation: generalization of traditional two-dimensional decomposition



This study investigates the differences and connections between the three-pattern decomposition of global atmospheric circulation, the representation of the horizontal vortex circulation in the middle–high latitudes and the local partitioning of the overturning circulation in the tropics. It concludes that the latter two methods are based on the traditional two-dimensional (2D) decomposition of the vortex and divergent circulations in the fluid dynamics and that the three-pattern decomposition model is not a simple superposition of the two traditional methods but a new three-dimensional (3D) decomposition of global atmospheric circulation. The three-pattern decomposition model can decompose the vertical vorticity of atmosphere into three parts: one part is caused by the horizontal circulation, whereas the other two parts are induced by divergent motions, which correspond to the zonal and meridional circulations. The diagnostic results from the decomposed vertical vorticities accord well with the classic theory: the atmospheric motion at 500 hPa is quasi-horizontal and nondivergent and can represent the vertical mean state of the entire atmosphere. The analysis of the climate characteristics shows that the vertical vorticities of the zonal and meridional circulations are the main cause of the differences between the three-pattern circulations and traditional circulations. The decomposition of the vertical vorticity by the three-pattern decomposition model offers new opportunities to quantitatively study the interaction mechanisms of the Rossby, Hadley and Walker circulations using the vorticity equation.


Vortex circulation in the middle–high latitudes Overturning circulation in the tropics Traditional two-dimensional decomposition Three-pattern decomposition of global atmospheric circulation Decomposition of vertical vorticity 

Supplementary material

382_2017_3530_MOESM1_ESM.pdf (16.8 mb)
Supplementary material 1 (PDF 17187 KB)


  1. Bowman KP, Cohen PJ (1997) Interhemispheric exchange by seasonal modulation of the Hadley circulation. J Atmos Sci 54:2045–2059. doi:10.1175/1520-0469(1997)054<2045:IEBSMO>2.0.CO;2 CrossRefGoogle Scholar
  2. Charney JG (1947) The dynamics of long waves in a baroclinic westerly current. J Meteor 4:135–162. doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2 CrossRefGoogle Scholar
  3. Diaz HF, Bradley RS (2004) The Hadley circulation: present, past, and future. Kluwer Academic Publishers, The NetherlandsCrossRefGoogle Scholar
  4. England MH et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227. doi:10.1038/Nclimate2106 CrossRefGoogle Scholar
  5. Farneti R, Molteni F, Kucharski F (2014) Pacific interdecadal variability driven by tropical-extratropical interactions. Clim Dyn 42:3337–3355. doi:10.1007/s00382-013-1906-6 CrossRefGoogle Scholar
  6. Haarsma RJ, Selten F (2012) Anthropogenic changes in the Walker circulation and their impact on the extra-tropical planetary wave structure in the Northern Hemisphere. Clim Dyn 39:1781–1799. doi:10.1007/s00382-012-1308-1 CrossRefGoogle Scholar
  7. Hartmann DL (1994) Global physical climatology. Academic Press, San DiegoGoogle Scholar
  8. Held IM, Phillips PJ (1990) A barotropic model of the interaction between the Hadley Cell and a Rossby Wave. J Atmos Sci 47:856–869. doi:10.1175/1520-0469(1990)047<0856:Abmoti>2.0.Co;2 CrossRefGoogle Scholar
  9. Holton JR (2004) Synoptic-scale motions I: quasi-geostrophic analysis. In: Cynar F (ed) An introduction to dynamic meteorology, 4th edn. Elsevier Academic Press, Amsterdam, pp 139–176Google Scholar
  10. Hosking JS, Russo MR, Braesicke P, Pyle JA (2012) Tropical convective transport and the Walker circulation. Atmos Chem Phys 12:9791–9797. doi:10.5194/acp-12-9791-2012 CrossRefGoogle Scholar
  11. Houze RA, Chen SS, Kingsmill DE, Serra Y, Yuter SE (2000) Convection over the Pacific warm pool in relation to the atmospheric Kelvin-Rossby wave. J Atmos Sci 57:3058–3089. doi:10.1175/1520-0469(2000)057<3058:COTPWP>2.0.CO;2 CrossRefGoogle Scholar
  12. Hu S (2006) The three-dimensional expansion of global atmospheric circumfluence and characteristic analyze of atmospheric vertical motion. Dissertation, Lanzhou University (in Chinese) Google Scholar
  13. Hu S, Chou J, Cheng J (2015) Three-pattern decomposition of global atmospheric circulation: part I- decomposition model and theorems. Clim Dyn. doi:10.1007/s00382-015-2818-4 Google Scholar
  14. Julian PR, Chervin RM (1978) A study of the Southern Oscillation and Walker Circulation phenomenon. Mon Weather Rev 106:1433–1451. doi:10.1175/1520-0493(1978)106<1433:ASOTSO>2.0.CO;2 CrossRefGoogle Scholar
  15. Kiladis GN (1998) Observations of Rossby waves linked to convection over the eastern tropical Pacific. J Atmos Sci 55:321–339. doi:10.1175/1520-0469(1998)055<0321:Oorwlt>2.0.Co;2 CrossRefGoogle Scholar
  16. Kiladis GN, Feldstein SB (1994) Rossby wave propagation into the tropics in two GFDL general circulation models. Clim Dyn 9:245–252. doi:10.1007/BF00208256 CrossRefGoogle Scholar
  17. Kiladis GN, Weickmann KM (1992) Extratropical forcing of tropical Pacific convection during northern winter. Mon Weather Rev 120:1924–1938. doi:10.1175/1520-0493(1992)120<1924:Efotpc>2.0.Co;2 CrossRefGoogle Scholar
  18. Lau WKM, Waliser DE (2012) Intraseasonal variability in the atmosphere-ocean climate system. Springer, BerlinCrossRefGoogle Scholar
  19. Liu H, Hu S, Xu M, Chou J (2008) Three-dimensional decomposition method of global atmospheric circulation. Sci China Ser D 51:386–402. doi:10.1007/s11430-008-0020-9 CrossRefGoogle Scholar
  20. Oort AH, Peixóto JP (1983) Global angular momentum and energy balance requirements from observations. Adv Geophys 25:355–490. doi:10.1016/S0065-2687(08)60177-6 CrossRefGoogle Scholar
  21. Rossby CG (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res 2:38–55CrossRefGoogle Scholar
  22. Schwendike J, Govekar P, Reeder MJ, Wardle R, Berry GJ, Jakob C (2014) Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. J Geophys Res 119:1322–1339. doi:10.1002/2013jd020742 Google Scholar
  23. Schwendike J, Berry GJ, Reeder MJ, Jakob C, Govekar P, Wardle R (2015) Trends in the local Hadley and local Walker circulations. J Geophys Res 120:7599–7618. doi:10.1002/2014jd022652 Google Scholar
  24. Trenberth KE, Solomon A (1994) The global heat balance: heat transports in the atmosphere and ocean. Clim Dyn 10:107–134. doi:10.1007/BF00210625 CrossRefGoogle Scholar
  25. Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulation. J Clim 13:3969–3993. doi:10.1175/1520-0442(2000)013<3969:Tgmast>2.0.Co;2 CrossRefGoogle Scholar
  26. Xu M (2001) Study on the three dimensional decomposition of large scale circulation and its dynamical feature. Dissertation, Lanzhou University (in Chinese) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina

Personalised recommendations