Climate Dynamics

, Volume 49, Issue 9–10, pp 3527–3550 | Cite as

Decadal prediction skill using a high-resolution climate model

  • Paul-Arthur Monerie
  • Laure Coquart
  • Éric Maisonnave
  • Marie-Pierre Moine
  • Laurent Terray
  • Sophie Valcke


The ability of a high-resolution coupled atmosphere–ocean general circulation model (with a horizontal resolution of a quarter of a degree in the ocean and of about 0.5° in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed based on initialized hindcasts over the 1993–2009 period. Significant skill in predicting sea surface temperatures is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). The model skill is mainly due to the external forcing associated with well-mixed greenhouse gases. A decrease in the global warming rate associated with a negative phase of the Pacific Decadal Oscillation is simulated by the model over a suite of 10-year periods when initialized from starting dates between 1999 and 2003. The model ability to predict regional change is investigated by focusing on the mid-90’s Atlantic Ocean subpolar gyre warming. The model simulates the North Atlantic warming associated with a meridional heat transport increase, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation: a negative sea level pressure anomaly, located south of the subpolar gyre is associated with a wind speed decrease over the subpolar gyre. This leads to a reduced oceanic heat-loss and favors a northward displacement of anomalously warm and salty subtropical water that both concur to the subpolar gyre warming. We finally conclude that the subpolar gyre warming is mainly triggered by ocean dynamics with a possible contribution of atmospheric circulation favoring its persistence.


High resolution climate model Climate prediction Global skill Ice predictability 2000’s slow down Hiatus Subpolar gyre North Atlantic Climate modelling 



We thank the two anonymous reviewers for their helpful and constructive suggestions and comments. The authors gratefully acknowledge the support from the Seventh Framework Programme (FP7) of the European Commission (grant agreement 308378) SPECS Project, the PRECLIDE project funded by the BNP-PARIBAS foundation. Simulations were run thanks to PRACE HiResClim I and II projects.

Supplementary material

382_2017_3528_MOESM1_ESM.odt (1.4 mb)
Supplementary material 1 (ODT 1473 KB)


  1. Bacmeister JT et al (2014) Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J Clim 27:3073–3099CrossRefGoogle Scholar
  2. Balmaseda M, Mogensen K, Molteni F, Weaver A (2010) The NEMOVAR-COMBINE ocean re-analysis. COMBINE Technical Report No 1Google Scholar
  3. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorolog Soc 139:1132–1161CrossRefGoogle Scholar
  4. Barnier B et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567CrossRefGoogle Scholar
  5. Barrier N, Cassou C, Deshayes J, Treguier A-M (2014) Response of North Atlantic Ocean circulation to atmospheric weather regimes. J Phys Oceanogr 44:179–201CrossRefGoogle Scholar
  6. Barrier N, Deshayes J, Treguier A-M, Cassou C (2015) Heat budget in the North Atlantic subpolar gyre: impacts of atmospheric weather regimes on the 1995 warming event. Prog Oceanogr 130:75–90CrossRefGoogle Scholar
  7. Bellucci A et al (2013) Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Clim Dyn 40:1483–1497CrossRefGoogle Scholar
  8. Bellucci A et al (2014) An assessment of a multi-model ensemble of decadal climate predictions. Clim Dyn 44:2787–2806CrossRefGoogle Scholar
  9. Bellucci A et al (2015) Advancements in decadal climate predictability: the role of nonoceanic drivers. Rev Geophys 53:165–202CrossRefGoogle Scholar
  10. Bersch M (2002) North Atlantic Oscillation–induced changes of the upper layer circulation in the northern North Atlantic Ocean. J Geophy Res Oceans 107Google Scholar
  11. Bersch M, Yashayaev I, Koltermann KP (2007) Recent changes of the thermohaline circulation in the subpolar North Atlantic. Ocean Dyn 57:223–235CrossRefGoogle Scholar
  12. Blanchard-Wrigglesworth E, Bitz C, Holland M (2011) Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophy Res Lett 38:L18503. doi: 10.1029/2011GL048807 CrossRefGoogle Scholar
  13. Boer G (2000) A study of atmosphere-ocean predictability on long time scales. Clim Dyn 16:469–477CrossRefGoogle Scholar
  14. Brönnimann S (2007) Impact of El Niño–southern oscillation on european climate. Rev Geophy 45:RG3003. doi: 10.1029/2006RG000199 CrossRefGoogle Scholar
  15. Brühl C, Lelieveld J, Tost H, Höpfner M, Glatthor N (2015) Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J Geophys Res Atmos 120:2103–2118CrossRefGoogle Scholar
  16. Chang C-Y, Nigam S, Carton JA (2008) Origin of the springtime westerly bias in equatorial Atlantic surface winds in the community atmosphere model version 3 (CAM3) simulation. J Clim 21:4766–4778CrossRefGoogle Scholar
  17. Chikamoto Y et al (2013) An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Clim Dyn 40:1201–1222CrossRefGoogle Scholar
  18. Collins M (2002) Climate predictability on interannual to decadal time scales: the initial value problem. Clim Dyn 19:671–692CrossRefGoogle Scholar
  19. Collins M et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19:1195–1203CrossRefGoogle Scholar
  20. Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorolog Soc 140:1935–1944CrossRefGoogle Scholar
  21. Cox P, Stephenson D (2007) A changing climate for prediction. Science 317:207–208CrossRefGoogle Scholar
  22. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623CrossRefGoogle Scholar
  23. Day J, Hawkins E, Tietsche S (2014) Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys Res Lett 41:7566–7575CrossRefGoogle Scholar
  24. Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorolog Soc 137:553–597CrossRefGoogle Scholar
  25. DelSole T, Shukla J (2010) Model fidelity versus skill in seasonal forecasting. J Clim 23:4794–4806CrossRefGoogle Scholar
  26. Delworth TL et al (2012) Simulated climate and climate change in the GFDL CM2. 5 high-resolution coupled climate model. J Clim 25:2755–2781CrossRefGoogle Scholar
  27. Doblas-Reyes F et al (2013a) Initialized near-term regional climate change prediction. Nature Comm 4:1715Google Scholar
  28. Doblas-Reyes FJ, García-Serrano J, Lienert F, Biescas AP, Rodrigues LR (2013b) Seasonal climate predictability and forecasting: status and prospects. Wiley interdisciplinary reviews. Clim Change 4:245–268Google Scholar
  29. Douville H, Voldoire A, Geoffroy O (2015) The recent global warming hiatus: what is the role of Pacific variability? Geophys Res Lett 42:880–888CrossRefGoogle Scholar
  30. England MH et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim Change 4:222–227CrossRefGoogle Scholar
  31. Ferry N et al (2012) GLORYS2V1 global ocean reanalysis of the altimetric era (1992–2009) at meso scale. Mercator Ocean–Quaterly Newsletter 44Google Scholar
  32. Fetterer F, Knowles K, Meier W, Savoie M (2009) Sea ice index. National Snow and Ice Data Center, Boulder, CO, USA. (Digital Media, updated)Google Scholar
  33. Fyfe J, Salzen K, Cole J, Gillett N, Vernier JP (2013) Surface response to stratospheric aerosol changes in a coupled atmosphere–ocean model. Geophys Res Lett 40:584–588CrossRefGoogle Scholar
  34. García-Serrano J, Guemas V, Doblas-Reyes F (2015) Added-value from initialization in predictions of Atlantic multi-decadal variability. Clim Dyn 44:2539–2555CrossRefGoogle Scholar
  35. Gent PR, Yeager SG, Neale RB, Levis S, Bailey DA (2010) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dyn 34:819–833CrossRefGoogle Scholar
  36. Germe A, Chevallier M, y Mélia DS, Sanchez-Gomez E, Cassou C (2014) Interannual predictability of Arctic sea ice in a global climate model: regional contrasts and temporal evolution. Clim Dyn 43:2519–2538CrossRefGoogle Scholar
  37. Goddard L et al (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40:245–272CrossRefGoogle Scholar
  38. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophy Res Oceans 118:6704–6716CrossRefGoogle Scholar
  39. Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variability. Science 275:181–184CrossRefGoogle Scholar
  40. Guemas V, Corti S, García-Serrano J, Doblas-Reyes F, Balmaseda M, Magnusson L (2013a) The Indian Ocean: the region of highest skill worldwide in decadal climate prediction*. J Clim 26:726–739Google Scholar
  41. Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M (2013b) Retrospective prediction of the global warming slowdown in the past decade. Nature. Clim Change 3:649–653Google Scholar
  42. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophy 48:RG4004. doi: 10.1029/2010RG000345 CrossRefGoogle Scholar
  43. Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844CrossRefGoogle Scholar
  44. Haywood JM, Jones A, Jones GS (2014) The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos Sci Lett 15:92–96CrossRefGoogle Scholar
  45. Hibbard KA, Meehl GA, Cox PM, Friedlingstein P (2007) A strategy for climate change stabilization experiments. Eos Trans Am Geophy Union 88:217–221CrossRefGoogle Scholar
  46. Huang B, Schopf PS, Pan Z (2002) The ENSO effect on the tropical Atlantic variability: a regionally coupled model study. Geophys Res Lett 29:35-31-35-34Google Scholar
  47. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  48. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. Geophy Monogr Am Geoph Union 134:1–36Google Scholar
  49. ICPO (2011) Data and bias correction for decadal climate predictions. International CLIVAR Project Office Publication Series 150:5. (Available online at
  50. Jia L et al (2015) Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J Clim 28:2044–2062CrossRefGoogle Scholar
  51. Johns WE et al (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5 N. J Clim 24:2429–2449CrossRefGoogle Scholar
  52. Jung T et al (2012) High-resolution global climate simulations with the ECMWF model in Project Athena: experimental design, model climate, and seasonal forecast skill. J Clim 25:3155–3172CrossRefGoogle Scholar
  53. Karspeck A, Yeager S, Danabasoglu G, Teng H (2015) An evaluation of experimental decadal predictions using CCSM4. Clim Dyn 44:907–923CrossRefGoogle Scholar
  54. Keenlyside N, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88CrossRefGoogle Scholar
  55. Kim H-M, Webster PJ, Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophy Res Lett 39:L10701. doi: 10.1029/2012gl051644 Google Scholar
  56. Kirtman BP et al (2012) Impact of ocean model resolution on CCSM climate simulations. Clim Dyn 39:1303–1328CrossRefGoogle Scholar
  57. Kopp G, Lean J-L (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophy Res Lett 38:L01706CrossRefGoogle Scholar
  58. Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407CrossRefGoogle Scholar
  59. Koster RD, Suarez MJ (2003) Impact of land surface initialization on seasonal precipitation and temperature prediction. J Hydrometeorol 4:408–423CrossRefGoogle Scholar
  60. Kruschke T, Rust HW, Kadow C, Müller WA, Pohlmann H, Leckebusch GC, Ulbrich U (2015) Probabilistic evaluation of decadal predictions of Northern Hemisphere winter storms. Meteorol Z doi: 10.1127/metz/2015/0641 Google Scholar
  61. Lee S-K, Park W, Baringer MO, Gordon AL, Huber B, Liu Y (2015) Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geosci 8:445-449Google Scholar
  62. Lellouche J-M et al (2013) Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Sci 9:57CrossRefGoogle Scholar
  63. Lindsay R et al (2012) Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness. Geophy Res Lett 39:L21502. doi: 10.1029/2012GL053576 CrossRefGoogle Scholar
  64. Lohmann K, Drange H, Bentsen M (2009) Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Clim Dyn 32:273–285CrossRefGoogle Scholar
  65. Madec G (2008) NEMO ocean engine. Note du Pole de mode´lisation, Institut Pierre-Simon Laplace (IPSL), France No 27 ISSN:No 1288–1619Google Scholar
  66. Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim 25:8502–8523CrossRefGoogle Scholar
  67. McClean JL et al (2011) A prototype two-decade fully-coupled fine-resolution CCSM simulation. Ocean Model 39:10–30CrossRefGoogle Scholar
  68. Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim Change 1:360–364CrossRefGoogle Scholar
  69. Meehl GA, Teng H, Arblaster JM (2014) Climate model simulations of the observed early-2000s hiatus of global warming. Nature Clim Change 4:898-902CrossRefGoogle Scholar
  70. Mehta VM, Wang H, Mendoza K (2013) Decadal predictability of tropical basin average and global average sea surface temperatures in CMIP5 experiments with the HadCM3, GFDL-CM2. 1, NCAR-CCSM4, and MIROC5 global Earth System Models. Geophys Res Lett 40:2807–2812CrossRefGoogle Scholar
  71. Mills MJ et al (2016) Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). J Geophys Res Atmos 121:2332–2348CrossRefGoogle Scholar
  72. Mochizuki T et al (2012) Decadal prediction using a recent series of MIROC global climate models. J Meteorol Soc Jpn 90A:373–383CrossRefGoogle Scholar
  73. Monerie P-A, Moine M-P, Terray L, Valcke S (submitted) Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature. Environ Res LettGoogle Scholar
  74. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophy Res Atmos 117:D08101. doi: 10.1029/2011JD017187 CrossRefGoogle Scholar
  75. Msadek R, Johns WE, Yeager SG, Danabasoglu G, Delworth TL, Rosati A (2013) The Atlantic meridional heat transport at 26.5 N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. J Clim 26:4335–4356CrossRefGoogle Scholar
  76. Msadek R et al (2014a) Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system. J Clim 27:6472–6496Google Scholar
  77. Msadek R, Vecchi G, Winton M, Gudgel R (2014b) Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys Res Lett 41:5208–5215Google Scholar
  78. Müller W, Appenzeller C, Schär C (2005) Probabilistic seasonal prediction of the winter North Atlantic oscillation and its impact on near surface temperature. Clim Dyn 24:213–226CrossRefGoogle Scholar
  79. Noilhan J, Mahfouf J-F (1996) The ISBA land surface parameterisation scheme. Global Planet Change 13:145–159CrossRefGoogle Scholar
  80. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549CrossRefGoogle Scholar
  81. Okumura Y, Xie S-P (2004) Interaction of the atlantic equatorial Cold tongue and the african monsoon*. J Clim 17:3589–3602CrossRefGoogle Scholar
  82. Ortega P, Hawkins E, Sutton R (2011) Processes governing the predictability of the Atlantic meridional overturning circulation in a coupled GCM. Clim Dyn 37:1771–1782CrossRefGoogle Scholar
  83. Ortega P, Montoya M, González-Rouco F, Mignot J, Legutke S (2012) Variability of the Atlantic meridional overturning circulation in the last millennium and two IPCC scenarios. Clim Dyn 38:1925–1947CrossRefGoogle Scholar
  84. Paolino DA, Kinter JL III, Kirtman BP, Min D, Straus DM (2012) The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J Clim 25:1007–1021CrossRefGoogle Scholar
  85. Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17:4463–4472CrossRefGoogle Scholar
  86. Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J Clim 22:3926–3938CrossRefGoogle Scholar
  87. Pohlmann H et al (2013) Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Clim Dyn 41:775–785CrossRefGoogle Scholar
  88. Richter I, Xie S-P (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31:587–598CrossRefGoogle Scholar
  89. Richter I, Behera SK, Doi T, Taguchi B, Masumoto Y, Xie S-P (2014a) What controls equatorial Atlantic winds in boreal spring? Clim Dyn 43:3091–3104Google Scholar
  90. Richter I, Xie S-P, Behera SK, Doi T, Masumoto Y (2014b) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188Google Scholar
  91. Ridley DA et al (2014) Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys Res Lett 41:7763–7769CrossRefGoogle Scholar
  92. Robson J, Sutton R, Lohmann K, Smith D, Palmer MD (2012a) Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J Clim 25:4116–4134Google Scholar
  93. Robson J, Sutton R, Smith D (2012b) Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophy Res Lett 39:L19713. doi: 10.1029/2012GL053370
  94. Sakamoto T et al (2012) MIROC4h—a new high-resolution atmosphere-ocean coupled general circulation model. J Meteorol Soc Jpn 90:325–359CrossRefGoogle Scholar
  95. Sanchez-Gomez E, Cassou C, Ruprich-Robert Y, Fernandez E, Terray L (2015) Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn 1–22Google Scholar
  96. Santer BD et al (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nature Geosci 7:185–189CrossRefGoogle Scholar
  97. Santer BD et al (2015) Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophys Res Lett 42:500–509CrossRefGoogle Scholar
  98. Sarafanov A, Falina A, Sokov A, Demidov A (2008) Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid-2000s. J Geophy Res Oceans 113:C12022. doi: 10.1029/2008JC004975
  99. Schmidt GA, Shindell DT, Tsigaridis K (2014) Reconciling warming trends. Nat Geosci 7:158–160CrossRefGoogle Scholar
  100. Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J Geophy Res Oceans 116Google Scholar
  101. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337CrossRefGoogle Scholar
  102. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536CrossRefGoogle Scholar
  103. Shaffrey LC et al (2009) UK HiGEM: The new UK high-resolution global environment model-model description and basic evaluation. J Clim 22:1861–1896CrossRefGoogle Scholar
  104. Sigmond M, Fyfe J, Flato G, Kharin V, Merryfield W (2013) Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys Res Lett 40:529–534CrossRefGoogle Scholar
  105. Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35Google Scholar
  106. Small RJ et al (2014) A new synoptic scale resolving global climate simulation using the community earth system model. J Adv Model Earth Syst 6:1065–1094CrossRefGoogle Scholar
  107. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799CrossRefGoogle Scholar
  108. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  109. Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner G-K (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223CrossRefGoogle Scholar
  110. Stockdale TN, Balmaseda MA, Vidard A (2006) Tropical Atlantic SST prediction with coupled ocean-atmosphere GCMs. J Clim 19:6047–6061CrossRefGoogle Scholar
  111. Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027CrossRefGoogle Scholar
  112. Szopa S et al (2013) Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Clim Dyn 40:2223–2250CrossRefGoogle Scholar
  113. Timmreck C, Pohlmann H, Illing S, Kadow C (2016) The impact of stratospheric volcanic aerosol on decadal-scale climate predictions. Geophys Res Lett 43:834–842CrossRefGoogle Scholar
  114. Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming? Earth’s Future 1:19–32CrossRefGoogle Scholar
  115. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newsl 115:12–18Google Scholar
  116. Valcke S, Craig T, Coquart L (2013) OASIS3-MCT User Guide OASIS3-MCT 2.0. CERFACS/CNRS SUC URAGoogle Scholar
  117. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280CrossRefGoogle Scholar
  118. Vancoppenolle M, Fichefet T, Goosse H (2009a) Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 2. Importance of sea ice salinity variations. Ocean Model 27:54–69Google Scholar
  119. Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G, Maqueda MAM (2009b) Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model 27:33–53Google Scholar
  120. Vernier JP et al (2011) Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophy Res Lett 38:L12807. doi: 10.1029/2011GL047563
  121. Visbeck M, Chassignet EP, Curry RG, Delworth TL, Dickson RR, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation variability. Geophy Monogr Am Geophy Union 134:113–146Google Scholar
  122. Voldoire A et al (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121CrossRefGoogle Scholar
  123. Vose RS et al (2012) NOAA’s merged land-ocean surface temperature analysis. Bull Am Meteorol Soc 93:1677–1685CrossRefGoogle Scholar
  124. Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophy Res Lett 36:L07502. doi: 10.1029/2009GL037820
  125. Watanabe M et al (2013) Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys Res Lett 40:3175–3179CrossRefGoogle Scholar
  126. Yashayaev I (2007) Hydrographic changes in the Labrador Sea, 1960–2005. Prog Oceanogr 73:242–276CrossRefGoogle Scholar
  127. Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: late twentieth-century North Atlantic Ocean heat content. J Clim 25:5173–5189CrossRefGoogle Scholar
  128. Zermeño-Diaz DM, Zhang C (2013) Possible root causes of surface westerly biases over the equatorial Atlantic in global climate models. J Clim 26:8154–8168CrossRefGoogle Scholar
  129. Zhang J, Steele M, Lindsay R, Schweiger A, Morison J (2008) Ensemble 1-Year predictions of Arctic sea ice for the spring and summer of 2008. Geophy Res Lett 35.  L08502. doi: 10.1029/2008GL033244

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.CECI UMR 5318 CNRS/CERFACSToulouseFrance

Personalised recommendations