Advertisement

Climate Dynamics

, Volume 49, Issue 9–10, pp 3473–3491 | Cite as

Intra-seasonal variability of extreme boreal stratospheric polar vortex events and their precursors

  • Adelaida Díaz-Durán
  • Encarna Serrano
  • Blanca Ayarzagüena
  • Marta Abalos
  • Alvaro de la Cámara
Article

Abstract

The dynamical variability of the boreal stratospheric polar vortex has been usually analysed considering the extended winter as a whole or only focusing on December, January and February. Yet recent studies have found intra-seasonal differences in the boreal stratospheric dynamics. In this study, the intra-seasonal variability of anomalous wave activity preceding polar vortex extremes in the Northern Hemisphere is examined using ERA-Interim reanalysis data. Weak (WPV) and strong (SPV) polar vortex events are grouped into early, mid- or late winter sub-periods depending on the onset date. Overall, the strongest (weakest) wave-activity anomalies preceding polar vortex extremes are found in mid- (early) winter. Most of WPV (SPV) events in early winter occur under the influence of east (west) phase of the Quasi-Biennial Oscillation (QBO) and an enhancement (inhibition) of wavenumber-1 wave activity (WN1). Mid- and late winter WPV events are preceded by a strong vortex and an enhancement of WN1 and WN2, but the spatial structure of the anomalous wave activity and the phase of the QBO are different. Prior to mid-winter WPVs the enhancement of WN2 is related to the predominance of La Niña and linked to blockings over Siberia. Mid-winter SPV events show a negative phase of the Pacific-North America pattern that inhibits WN1 injected into the stratosphere. This study suggests that dynamical features preceding extreme polar vortex events in mid-winter should not be generalized to other winter sub-periods.

Keywords

Intra-seasonal variability Wave activity Stratospheric polar vortex extremes Tropospheric precursors Tropospheric forcing Stratospheric dynamics 

Notes

Acknowledgements

The authors are grateful to two anonymous reviewers, whose comments help improve this manuscript. This work was supported by the Spanish Ministry of Economy and Competitiveness (grant number CGL2012-34997). BA is supported by the Natural Environment Research Council (grant number NE/M006123/1). MA acknowledges funding from the NASA ACMAP program. The ERA-Interim reanalysis data were obtained online at http://data-portal.ecmwf.int/data/d/interim full moda/. ENSO and QBO indices have been taken from http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears_ERSSTv3b.shtml and http://www.cpc.noaa.gov/data/indices/, respectively.

References

  1. Albers JR, Birner T (2014) Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J Atmos Sci 71:4028–4054. doi: 10.1175/JAS-D-14-0026.1 CrossRefGoogle Scholar
  2. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press, Orlando, Florida, 489 ppGoogle Scholar
  3. Ayarzagüena B, Langematz U, Serrano E (2011) Tropospheric forcing of the stratosphere: a comparative study of the two different major stratospheric warmings in 2009 and 2010. J Geophys Res Atmos 116. doi: 10.1029/2010JD015023
  4. Ayarzagüena B, Langematz U, Meul S, Oberländer S, Abalichin J, Kubin A (2013) The role of climate change and ozone recovery for the future timing of major stratospheric warmings. Geophys Res Lett 40:2460–2465. doi: 10.1002/grl.50477 CrossRefGoogle Scholar
  5. Ayarzagüena B, Orsolini YJ, Langematz U, Abalichin J, Kubin A (2015) The relevance of the location of blocking highs for stratospheric variability in a changing climate. J Clim 28:531–549. doi: 10.1175/JCLI-D-14-00210.1 CrossRefGoogle Scholar
  6. Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res 104:30937–30946. doi: 10.1029/1999JD900445 CrossRefGoogle Scholar
  7. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584. doi: 10.1126/science.1063315 CrossRefGoogle Scholar
  8. Baldwin MP, Thompson DW (2009) A critical comparison of stratosphere–troposphere coupling indices. Q J R Meteorol Soc 135:1661–1672. doi: 10.1002/qj.479 CrossRefGoogle Scholar
  9. Baldwin MP, Stephenson DB, Thompson DW, Dunkerton TJ, Charlton AJ, O’Neill A (2003) Stratospheric memory and skill of extended-range weather forecasts. Sci 301:636–640. doi: 10.1126/science.1087143 CrossRefGoogle Scholar
  10. Barriopedro D, Calvo N (2014) On the relationship between ENSO, stratospheric sudden warmings, and blocking. J Clim 27:4704–4720. doi: 10.1175/JCLI-D-13-00770.1 CrossRefGoogle Scholar
  11. Butler AH, Polvani LM (2011) El Niño, La Niña, and stratospheric sudden warmings: a reevaluation in light of the observational record. Geophys Res Lett 38. doi: 10.1029/2011GL048084 Google Scholar
  12. Christiansen B (2001) Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: model and reanalysis. J Geophys Res 106:27307–27322. doi: 10.1029/2000JD000214 CrossRefGoogle Scholar
  13. Christiansen B (2005) Downward propagation and statistical forecast of the near-surface weather. J Geophys Res Atmos 110. doi: 10.1029/2004JD005431
  14. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al. (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  15. Dunkerton TJ (1990) Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere. J Meteor Soc Jpn 68:499–508CrossRefGoogle Scholar
  16. Eliassen A, Palm E (1961) On the transfer of energy in stationary mountain waves. Geofysiske Publikasjoner 22:1–23Google Scholar
  17. García-Serrano J, Frankignoul C, Gastineau G, de la Cámara A (2015) On the predictability of the winter Euro-Atlantic climate: lagged influence of autumn Arctic sea-ice. J Clim 28:5195–5216. doi: 10.1175/JCLI-D-14-00472.1 CrossRefGoogle Scholar
  18. Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J Clim 23:3282–3299. doi: 10.1175/2010JCLI3010.1 CrossRefGoogle Scholar
  19. Gomez-Escolar M, Fueglistaler S, Calvo N, Barriopedro D (2012) Changes in polar stratospheric temperature climatology in relation to stratospheric sudden warming occurrence. Geophys Res Lett 39. doi: 10.1029/2012GL053632
  20. Gray LJ (2003) The influence of the equatorial upper stratosphere on stratospheric sudden warmings. Geophys Res Lett 30. doi: 10.1029/2002GL016430
  21. Gray LJ, Crooks S, Pascoe C, Sparrow S, Palmer M (2004) Solar and QBO influences on the timing of stratospheric sudden warmings. J Atmos Sci 61:2777–2796CrossRefGoogle Scholar
  22. Holton JR, Tan HC (1980) The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J Atmos Sci 37:2200–2208CrossRefGoogle Scholar
  23. Hu Y, Tung KK (2003) Possible ozone induced long term changes in planetary wave activity in late winter. J Clim 16:3027–3038CrossRefGoogle Scholar
  24. Kodera K, Matthes K, Shibata K, Langematz U, Kuroda Y (2003) Solar impact on the lower mesospheric subtropical jet: a comparative study with general circulation model simulations. Geophys Res Lett 30. doi: 10.1029/2002GL016124
  25. Kolstad EW, Charlton-Perez AJ (2011) Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim Dyn 37:1443–1456. doi: 10.1007/s00382-010-0919-7 CrossRefGoogle Scholar
  26. Kolstad EW, Sobolowski SP, Scaife AA (2015) Intraseasonal persistence of European surface temperatures. J Clim 28:5365–5374. doi: 10.1175/JCLI-D-15-0053.1 CrossRefGoogle Scholar
  27. Labitzke K (1981) Stratospheric-mesospheric midwinter disturbances: a summary of observed characteristics. J Geophys Res 86:9665–9678. doi: 10.1029/JC086iC10p09665 CrossRefGoogle Scholar
  28. Li Y, Lau NC (2013) Influences of ENSO on stratospheric variability, and the descent of stratospheric perturbations into the lower troposphere. J Clim 26:4725–4748. doi: 10.1175/JCLI-D-12-00581.1 CrossRefGoogle Scholar
  29. Li Q, Graf HF, Giorgetta MA (2007) Stationary planetary wave propagation in Northern Hemisphere winter-climatological analysis of the refractive index. Atmos Chem and Phys 7:183–200CrossRefGoogle Scholar
  30. Limpasuvan V, Thompson DW, Hartmann DL (2004) The life cycle of the Northern hemisphere sudden stratospheric warming. J Clim 17:2584–2596CrossRefGoogle Scholar
  31. Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the Northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19:3863–3881CrossRefGoogle Scholar
  32. Martius O, Polvani LM, Davies HC (2009) Blocking precursors to stratospheric sudden warming events. Geophys Res Lett 36. doi: 10.1029/2009GL038776 Google Scholar
  33. Newman PA, Rosenfield JE (1997) Stratospheric thermal damping times. Geophys Res Lett 24:433–436. doi: 10.1029/96GL03720 CrossRefGoogle Scholar
  34. Nishii K, Nakamura H, Miyasaka T (2009) Modulations in the planetary wave field induced by upward propagating Rossby wave packets prior to stratospheric sudden warming events: a case-study. Q J R Meteor Soc 135:39–52. doi: 10.1002/qj.359 CrossRefGoogle Scholar
  35. Nishii K, Nakamura H, Orsolini YJ (2010) Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys Res Lett 37. doi: 10.1029/2010GL043551
  36. Nishii K, Nakamura H, Orsolini YJ (2011) Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J Clim 24:6408–6423. doi: 10.1175/JCLI-D-10-05021.1 CrossRefGoogle Scholar
  37. Palmer TN (1981) Diagnostic study of a wavenumber-2 stratospheric sudden warming in a transformed Eulerian-mean formalism. J Atmos Sci 38:844–855CrossRefGoogle Scholar
  38. Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42:217–229CrossRefGoogle Scholar
  39. Polvani LM, Waugh DW (2004) Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim 17:3548–3554CrossRefGoogle Scholar
  40. Quiroz RS (1979) Tropospheric-stratospheric interaction in the major warming event of January–February 1979. Geophys Res Lett 6:645–648. doi: 10.1029/GL006i008p00645 CrossRefGoogle Scholar
  41. Scaife AA, Arribas A, Blockley E, Brookshaw A, Clark RT, Dunstone N et al (2014) Skillful long-range prediction of European and North American winters. Geophys Res Lett 41:2514–2519. doi: 10.1002/2014GL059637 CrossRefGoogle Scholar
  42. Smith KL, Kushner PJ (2012) Linear interference and the initiation of extratropical stratosphere-troposphere interactions. J Geophys Res 117. doi: 10.1029/2012JD017587 Google Scholar
  43. Solomon A (2014) Wave activity events and the variability of the stratospheric polar vortex. J Clim 27:7796–7806. doi: 10.1175/JCLI-D-13-00756.1 CrossRefGoogle Scholar
  44. Taguchi M, Hartmann DL (2006) Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J Clim 19:324–332CrossRefGoogle Scholar
  45. White IP, Lu H, Mitchell NJ (2016) Seasonal evolution of the QBO-induced wave forcing and circulation anomalies in the northern winter stratosphere. J Geophys Res Atmos 121. doi: 10.1002/2015JD024507
  46. Woollings T, Charlton-Perez A, Ineson S, Marshall AG, Masato G (2010) Associations between stratospheric variability and tropospheric blocking. J Geophys Res 115. doi: 10.1029/2009JD012742 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Departamento de Geofísica y Meteorología, Facultad de CC. Físicas, Universidad Complutense de MadridMadridSpain
  2. 2.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
  3. 3.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations