Advertisement

Climate Dynamics

, Volume 49, Issue 9–10, pp 3443–3455 | Cite as

Atlantic effects on recent decadal trends in global monsoon

  • Youichi KamaeEmail author
  • Xichen Li
  • Shang-Ping Xie
  • Hiroaki Ueda
Article

Abstract

Natural climate variability contributes to recent decadal climate trends. Specifically the trends during the satellite era since 1979 include Atlantic and Indian Ocean warming and Pacific cooling associated with phase shifts of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation, and enhanced global monsoon (GM) circulation and rainfall especially in the Northern Hemisphere. Here we evaluate effects of the oceanic changes on the global and regional monsoon trends by partial ocean temperature restoring experiments in a coupled atmosphere–ocean general circulation model. Via trans-basin atmosphere–ocean teleconnections, the Atlantic warming drives a global pattern of sea surface temperature change that resembles observations, giving rise to the enhanced GM. The tropical Atlantic warming and the resultant Indian Ocean warming favor subtropical deep-tropospheric warming in both hemispheres, resulting in the enhanced monsoon circulations and precipitation over North America, South America and North Africa. The extratropical North Atlantic warming makes an additional contribution to the monsoon enhancement via Eurasian continent warming and resultant land–sea thermal gradient over Asia. The results of this study suggest that the Atlantic multidecadal variability can explain a substantial part of global climate variability including the recent decadal trends of GM.

Keywords

Global monsoon PDO AMO Meridional thermal gradient 

Notes

Acknowledgements

The authors are grateful to two anonymous reviewers for their constructive comments. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table S1 in the online supplement) for producing and making available their model output. For CMIP5, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provided coordinating support, and led the development of the software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Supplementary material

382_2017_3522_MOESM1_ESM.pdf (121 kb)
Supplementary material 1 (PDF 120 KB)

References

  1. An Z et al (2015) Global monsoon dynamics and climate change. Ann Rev Earth Planet Sci 43:29–77. doi: 10.1146/annurev-earth-060313-054623 CrossRefGoogle Scholar
  2. Arai M, Kimoto M (2008) Simulated interannual variation in summertime atmospheric circulation associated with the East Asian monsoon. Clim Dyn 31:435–447CrossRefGoogle Scholar
  3. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the south Asian summer monsoon. Science 334:502–505CrossRefGoogle Scholar
  4. Cai W, van Rensch P (2013) Austral summer teleconnections of Indo-Pacific variability: their nonlinearity and impacts on Australian climate. J Clim 26:2796–2810CrossRefGoogle Scholar
  5. Chikamoto Y et al. (2015) Skilful multi-year predictions of tropical trans-basin climate variability. Nat Comm 6:6869. doi: 10.1038/ncomms7869 CrossRefGoogle Scholar
  6. Christensen JH, Krishna Kumar K, Aldrian E et al (2014) Climate phenomena and their relevance for future regional climate change. In: Stocker TF (ed) Climate change 2013: the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1217–1308Google Scholar
  7. Dai A, Li H, Sun Y, Hong L-C, LinHo, Chou C, Zhou T (2013) The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J Geophys Res Atmos 118:7024–7045CrossRefGoogle Scholar
  8. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597CrossRefGoogle Scholar
  9. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17:3109–3124CrossRefGoogle Scholar
  10. Dong B, Sutton RT, Highwood EJ, Wilcox LJ (2016) Preferred response of the East Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions. Clim Dyn 46: 1733–1751CrossRefGoogle Scholar
  11. Endo H, Kitoh A (2014) Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys Res Lett 41:1704–1710. doi: 10.1002/2013gl059158 CrossRefGoogle Scholar
  12. Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320:602–607CrossRefGoogle Scholar
  13. Goswami BN, Madhusoodanan M, Neema C, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. doi: 10.1029/2005GL024803 Google Scholar
  14. Gu F, Adler RF, Huffman GJ (2016) Long-term changes/trends in surface temperature and precipitation during the satellite era (1979–2012). Clim Dyn 46:1091–1105CrossRefGoogle Scholar
  15. Hao Y-Q, Zhu C-W, Liu B-Q (2016) Discrepancies in boreal summer monsoon rainfall between GPCP and CMAP products during 1979–2014. Atmos Ocean Sci Lett 9:226–233CrossRefGoogle Scholar
  16. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642CrossRefGoogle Scholar
  17. Hoerling M, Hurrell J, Eischeid J, Phillips A (2006) Detection and attribution of 20th century northern and southern African rainfall change. J Clim 19:3989–4008CrossRefGoogle Scholar
  18. Hsu P-C, Li T, Wang B (2011) Trends in global monsoon area and precipitation over the past 30 years. Geophys Res Lett 38:L08701. doi: 10.1029/2011GL046893 CrossRefGoogle Scholar
  19. Hsu P-C, Li T, Luo J-J, Murakami H, Kitoh A, Zhao M (2012) Increase of global monsoon area and precipitation under global warming: A robust signal? Geophys Res Lett 39:L06701. doi: 10.1029/2012GL051037 Google Scholar
  20. Hsu P-C, Li T, Murakami H, Kitoh A (2013) Future change of the global monsoon revealed from 19 CMIP5 models. J Geophys Res Atmos 118:1247–1260CrossRefGoogle Scholar
  21. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36:L17808. doi: 10.1029/2009GL040000 CrossRefGoogle Scholar
  22. Hurrell JW et al (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360CrossRefGoogle Scholar
  23. Hwang Y-T, Frierson DMW, Kang SM (2013) Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys Res Lett 40:2845–2850CrossRefGoogle Scholar
  24. Jiang D, Tian Z, Lang X, Kageyama M, Ramstein G (2015) The concept of global monsoon applied to the last glacial maximum: A multi-model analysis. Quat Sci Rev 126:126–139CrossRefGoogle Scholar
  25. Kamae Y, Shiogama H, Watanabe M, Kimoto M (2014a) Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophys Res Lett 41:5192–5199Google Scholar
  26. Kamae Y, Watanabe M, Kimoto M, Shiogama H (2014b) Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate–Part I: Past changes and future projections. Clim Dyn 43:2553–2568Google Scholar
  27. Kamae Y, Shiogama H, Watanabe M, Ishii M, Ueda H, Kimoto M (2015) Recent slowdown of tropical upper tropospheric warming associated with Pacific climate variability. Geophys Res Lett 42:2995–3003CrossRefGoogle Scholar
  28. Kamae Y, Ogura T, Watanabe M, Xie S-P, Ueda H (2016a) Robust cloud feedback over tropical land in a warming climate. J Geophys Res Atmos 121:2593–2609Google Scholar
  29. Kamae Y et al (2016b) Forced response and internal variability of summer climate over western North America. Clim Dyn. doi: 10.1007/s00382-016-3350-x
  30. Kawamura R (1998) A possible mechanism of the Asian summer monsoon-ENSO coupling. J Meteorol Soc Jpn 76:1009–1027CrossRefGoogle Scholar
  31. Kawase H, Takemura T, Nozawa T (2011) Impact of carbonaceous aerosols on precipitation in tropical Africa during the austral summer in the twentieth century. J Geophys Res 116:D18116. doi: 10.1029/2011JD015933 CrossRefGoogle Scholar
  32. Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IFA, Goswami P, Zhou T (2013) Monsoons in a changing world: A regional perspective in a global context. J Geophys Res Atmos 118:3053–3065CrossRefGoogle Scholar
  33. Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407CrossRefGoogle Scholar
  34. Kucharski F, Bracco A, Yoo JH, Tompkins A, Feudale L, Ruti P, Dell’Aquila A (2009) A Gill-Matsun-type mechanism explains the Tropical Atlantic influence on African and Indian Monsoon rainfall. Quart J R Met Soc 135:569–579CrossRefGoogle Scholar
  35. Kucharski F et al (2016) Atlantic forcing of Pacific decadal variability. Clim Dyn 46: 2337–2351CrossRefGoogle Scholar
  36. Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159CrossRefGoogle Scholar
  37. Kushnir Y, Seager R, Ting MF, Naik N, Nakamura J (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J Clim 23:5610–5628CrossRefGoogle Scholar
  38. Lee J-Y, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119CrossRefGoogle Scholar
  39. Li CF, Yanai M (1996) The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J Clim 9:358–375CrossRefGoogle Scholar
  40. Li S, Perlwitz J, Quan X, Hoerling MP (2008) Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys Res Lett 35:L05804. doi: 10.1029/2007GL032901 Google Scholar
  41. Li X, Xie S-P, Gille ST, Yoo C (2016) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Change 6:275–279CrossRefGoogle Scholar
  42. Lin R, Zhou T, Qian Y (2014) Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J Clim 27:1271–1289CrossRefGoogle Scholar
  43. Lu J (2009) The dynamics of the Indian Ocean sea surface temperature forcing of Sahel drought. Clim Dyn 33: 445–460CrossRefGoogle Scholar
  44. Lu R, Dong B, Ding H (2006) Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys Res Lett 33:L24701. doi: 10.1029/2006GL027655 CrossRefGoogle Scholar
  45. Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA 109:18701–18706CrossRefGoogle Scholar
  46. Ma J, Yu J-Y (2014) Paradox in South Asian summer monsoon circulation change: Lower tropospheric strengthening and upper tropospheric weakening. Geophys Res Lett 41:2934–2940CrossRefGoogle Scholar
  47. Ma J, Xie S-P, Kosaka Y (2012) Mechanisms for tropical tropospheric circulation change in response to global warming. J Clim 25:2979–2994CrossRefGoogle Scholar
  48. Man W, Zhou T, Jungclaus JH (2012) Simulation of the East Asian summer monsoon during the last millennium with the MPI earth system model. J Clim 25:7852–7866CrossRefGoogle Scholar
  49. McGregor S et al (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892CrossRefGoogle Scholar
  50. Meinshausen M et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241CrossRefGoogle Scholar
  51. Mishra V, Smoliak BV, Lettenmaier DP, Wallace JM (2012) A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall. Proc Natl Acad Sci USA 109:7213–7217CrossRefGoogle Scholar
  52. Mo KC, Livezey RE (1986) Tropical–extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon Weather Rev 114:2488–2515CrossRefGoogle Scholar
  53. Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37:419–440CrossRefGoogle Scholar
  54. Mohtadi M, Prange M, Steinke S (2016) Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 533:191–199CrossRefGoogle Scholar
  55. Murakami T, Matsumoto J (1994) Summer monsoon over the Asian continent and western North Pacific. J Meteorol Soc Jpn 72:719–745CrossRefGoogle Scholar
  56. Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang M (2013) The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J Clim 26:5150–5168CrossRefGoogle Scholar
  57. Newman M et al (2016) The Pacific Decadal Oscillation, revisited. J Clim 29:4399–4427CrossRefGoogle Scholar
  58. Ogata T et al (2014) Projected future changes in the Asian Monsoon: a comparison of CMIP3 and CMIP5 model results. J Meteorol Soc Jpn 92:207–225CrossRefGoogle Scholar
  59. Polson D, Bollasina M, Hegerl GC, Wilcox LJ (2014) Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys Res Lett 41:6023–6029CrossRefGoogle Scholar
  60. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  61. Rasmusson EM, Carpenter TH (1983) Relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Weather Rev 111:517–528CrossRefGoogle Scholar
  62. Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  63. Rodríguez-Fonseca B et al (2015) Variability and predictability of West African droughts: a review on the role of sea surface temperature anomalies. J Clim 28:4034–4060CrossRefGoogle Scholar
  64. Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116CrossRefGoogle Scholar
  65. Rotstayn LD, Ryan BF, Penner JE (2000) Precipitation changes in a GCM resulting from the indirect effects of anthropogenic aerosols. Geophys Res Lett 27:3045–3048CrossRefGoogle Scholar
  66. Rotstayn LD et al (2007) Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols? J Geophys Res 112:D09202. doi: 10.1029/2006JD007712 CrossRefGoogle Scholar
  67. Roxy MK, Ritika K, Terray P, Masson S (2014) The curious case of Indian Ocean warming. J Clim 27:8501–8509CrossRefGoogle Scholar
  68. Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun 6:7423. doi: 10.1038/ncomms8423 CrossRefGoogle Scholar
  69. Smith IN (2004) An assessment of recent trends in Australian rainfall. Aust Meteor Mag 53:163–173Google Scholar
  70. Solomon A, Newman M (2012) Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat Clim Change 2:691–699CrossRefGoogle Scholar
  71. Sooraj KP, Terray P, Mujumdar M (2015) Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim Dyn 45:233–252CrossRefGoogle Scholar
  72. Sperber KR, Annamalai H, Kang I-S, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744CrossRefGoogle Scholar
  73. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613CrossRefGoogle Scholar
  74. Sun Y, Ding Y, Dai A (2010) Changing links between South Asian summer monsoon circulation and tropospheric land-sea thermal contrasts under a warming scenario. Geophys Res Lett 37:L02704. doi: 10.1029/2009GL041662 Google Scholar
  75. Taschetto AS, England MH (2009) An analysis of late 20th century trends in Australian rainfall. Int J Climatol 29:791–807CrossRefGoogle Scholar
  76. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 90:485–498CrossRefGoogle Scholar
  77. Terray P, Masson S, Prodhomme C, Roxy MK, Sooraj KP (2016) Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim Dyn 46:2507–2533CrossRefGoogle Scholar
  78. Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705. doi: 10.1029/2011GL048712 CrossRefGoogle Scholar
  79. Trenberth KE, Stepaniak DP, Caron JM (2000) The Global monsoon as seen through the divergent atmospheric circulation. J Clim 13:3969–3993CrossRefGoogle Scholar
  80. Trenberth KE, Fasullo JT, Branstator G, Phillips S (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Change 4:911–916CrossRefGoogle Scholar
  81. Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by 8 GCMs. Geophys Res Lett 33:L06703. doi: 10.1029/2005GL025336 CrossRefGoogle Scholar
  82. Ueda H, Kuroki H, Ohba M, Kamae Y (2011) Seasonally asymmetric transition of the Asian monsoon in response to ice age boundary conditions. Clim Dyn 37:2167–2179CrossRefGoogle Scholar
  83. Ueda H, Kamae Y, Hayasaki M, Kitoh A, Watanabe A, Miki Y, Kumai A (2015) Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon. Nat Commun 6:8854. doi: 10.1038/ncomms9854 CrossRefGoogle Scholar
  84. Wang B, Ding QH (2006) Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett 33:L06711. doi: 10.1029/2005GL025347 Google Scholar
  85. Wang B, Ding QH (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44:165–183CrossRefGoogle Scholar
  86. Wang B, Ding Q, Fu Z, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi: 10.1029/2005GL022734 CrossRefGoogle Scholar
  87. Wang C, Kucharski F, Barimalala R, Bracco A (2009a) Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans: A review of recent findings. Meteorol Zeitschr 18: 445–454Google Scholar
  88. Wang Y, Li S, Luo D (2009b) Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J Geophys Res 114:D02112. doi: 10.1029/2008JD010929
  89. Wang B, Liu J, Kim HJ, Webster PJ, Yim SY (2012) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39:1123–1135CrossRefGoogle Scholar
  90. Wang B, Liu J, Kim HJ, Webster PJ, Yim SY, Xiang B (2013) Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci USA 110:5347–5352CrossRefGoogle Scholar
  91. Wang PX, Wang B, Cheng H, Fasullo J, Guo ZT, Kiefer T, Liu ZY (2014) The global monsoon across timescales: coherent variability of regional monsoons. Clim Past 10:2007–2052CrossRefGoogle Scholar
  92. Wang H, Xie S-P, Liu Q (2016) Comparison of climate response to anthropogenic aerosol versus greenhouse gas forcing: distinct patterns. J Clim 29:5205–5222CrossRefGoogle Scholar
  93. Watanabe M, Kamae Y, Yoshimori M, Oka A, Sato M, Ishii M, Mochizuki T, Kimoto M (2013) Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys Res Lett 40:3175–3179CrossRefGoogle Scholar
  94. Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M (2014) Contribution of natural decadal variability to global-warming acceleration and hiatus. Nat Clim Change 4:893–897CrossRefGoogle Scholar
  95. Webster PJ (2006) The development of a holistic view of the monsoon. In: Wang B (ed) The Asian monsoon. Springer/Praxis Publishing Co., New YorkGoogle Scholar
  96. Webster PJ, Yang S (1992) Monsoon and ENSO: Selectively interactive systems. Quart J Roy Meteorol Soc 118:877–926CrossRefGoogle Scholar
  97. Webster PJ et al (1998) Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510CrossRefGoogle Scholar
  98. Xie P, Arkin PA (1997) Global Precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  99. Xie S-P, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46:340–350CrossRefGoogle Scholar
  100. Xie S-P et al (2009) Indian Ocean capacitor effect on Indo–Western Pacific climate during the summer following El Niño. J Clim 22:730–747CrossRefGoogle Scholar
  101. Xie S-P et al (2015) Towards predictive understanding of regional climate change. Nat Clim Change 5:921–930CrossRefGoogle Scholar
  102. Yan M, Wang B, Liu J (2016) Global monsoon change during the Last Glacial Maximum: a multi-model study. Clim Dyn 47: 359–374CrossRefGoogle Scholar
  103. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi: 10.1029/2006GL026267 CrossRefGoogle Scholar
  104. Zhou T et al (2009) Why the Western Pacific Subtropical High has extended westward since the late 1970s. J Clim 22:2199–2215CrossRefGoogle Scholar
  105. Zuo Z, Yang S, Zhang R, Jiang P, Zhang L, Wang F (2013) Long-term variations of broad-scale Asian Summer Monsoon circulation and possible causes. J Clim 26:8947–8961CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  3. 3.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations