Climate Dynamics

, Volume 49, Issue 9–10, pp 3383–3401 | Cite as

Origin of path independence between cumulative CO\(_{2}\) emissions and global warming

  • Ashwin K. Seshadri


Observations and GCMs exhibit approximate proportionality between cumulative carbon dioxide (CO\(_{2}\)) emissions and global warming. Here we identify sufficient conditions for the relationship between cumulative CO\(_{2}\) emissions and global warming to be independent of the path of CO\(_{2}\) emissions; referred to as “path independence”. Our starting point is a closed form expression for global warming in a two-box energy balance model (EBM), which depends explicitly on cumulative emissions, airborne fraction and time. Path independence requires that this function can be approximated as depending on cumulative emissions alone. We show that path independence arises from weak constraints, occurring if the timescale for changes in cumulative emissions (equal to ratio between cumulative emissions and emissions rate) is small compared to the timescale for changes in airborne fraction (which depends on CO\(_{2}\) uptake), and also small relative to a derived climate model parameter called the damping-timescale, which is related to the rate at which deep-ocean warming affects global warming. Effects of uncertainties in the climate model and carbon cycle are examined. Large deep-ocean heat capacity in the Earth system is not necessary for path independence, which appears resilient to climate modeling uncertainties. However long time-constants in the Earth system carbon cycle are essential, ensuring that airborne fraction changes slowly with timescale much longer than the timescale for changes in cumulative emissions. Therefore path independence between cumulative emissions and warming cannot arise for short-lived greenhouse gases.


Global warming Cumulative CO\(_{2}\) emissions Energy balance models Path independence Carbon cycle 



This work has been supported by Divecha Centre for Climate Change, Indian Institute of Science. Two anonymous reviewers made valuable suggestions

Supplementary material

382_2016_3519_MOESM1_ESM.pdf (447 kb)
ESM1 (PDF 446 kb)


  1. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166. doi: 10.1038/nature08019 CrossRefGoogle Scholar
  2. Archer D, Brovkin V (2008) The millennial atmospheric lifetime of anthropogenic CO\(_{2}\). Clim Change 90(3):283–297. doi: 10.1007/s10584-008-9413-1 CrossRefGoogle Scholar
  3. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Ann Rev Earth Planet Sci 37:117–134. doi: 10.1146/ CrossRefGoogle Scholar
  4. Bowerman NHA, Frame DJ, Huntingford C, Lowe JA, Allen MR (2011) Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy. Philos Trans R Soc Lond A 369:45–66. doi: 10.1098/rsta.2010.0288 CrossRefGoogle Scholar
  5. Caldeira K, Casting JF (1993) Insensitivity of global warming potentials to carbon dioxide emission scenarios. Nature 366:251–253. doi: 10.1038/366251a0 CrossRefGoogle Scholar
  6. Cao L, Caldeira K (2010) Atmospheric carbon dioxide removal: long-term consequences and commitment. Environ Res Lett 5:1–6. doi: 10.1088/1748-9326/5/2/024011 CrossRefGoogle Scholar
  7. den Elzen M, Meinshausen M (2006) Meeting the EU 2 C climate target: global and regional emission implications. Clim Policy 6:545–564. doi: 10.1080/14693062.2006.9685620 CrossRefGoogle Scholar
  8. Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ (2009) Lifetime of anthropogenic climate change: millenial time scales of potential CO2 and surface temperature perturbations. J Clim 22:2501–2511. doi: 10.1175/2008JCLI2554.1 CrossRefGoogle Scholar
  9. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353. doi: 10.1175/JCLI3800.1 CrossRefGoogle Scholar
  10. Frolicher TL, Paynter DJ (2015) Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales. Environ Res Lett 10:1–9. doi: 10.1088/1748-9326/10/7/075002 CrossRefGoogle Scholar
  11. Geoffroy O, Saint-Martin D (2014) Pattern decomposition of the transient climate response. Tellus A 66:1–7. doi: 10.3402/tellusa.v66.23393 CrossRefGoogle Scholar
  12. Geoffroy O, Saint-Martin D, Olivie DJL, Voldoire A, Bellon G, Tyteca S (2013a) Transient climate response in a two-layer energy-balance model: Part 1: analytical solution and parameter calibration using CMIP5 AOGCM experiments. J Clim 26:1841–1857. doi: 10.1175/JCLI-D-12-00195.1 CrossRefGoogle Scholar
  13. Geoffroy O, Saint-Martin D, Bellon G, Voldoire A, Olivie DJL, Tyteca S (2013b) Transient climate response in a two-layer energy-balance model. Part II: representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. J Clim 26:1859–1876. doi: 10.1175/JCLI-D-12-00196.1 CrossRefGoogle Scholar
  14. Gillett NP, Arora VK, Matthews D, Allen MR (2013) Constraining the ratio of global warming to cumulative CO\(_{2}\) emissions using CMIP5 simulations. J Clim 26:6844–6858. doi: 10.1175/JCLI-D-12-00476.1 CrossRefGoogle Scholar
  15. Goodwin P, Williams RG, Ridgwell A (2015) Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nat Geosci 8:29–34. doi: 10.1038/ngeo2304 CrossRefGoogle Scholar
  16. Gregory JM (2000) Vertical heat transports in the ocean and their effect on time-dependent climate change. Clim Dyn 16:501–515. doi: 10.1007/s003820000059 CrossRefGoogle Scholar
  17. Held IM, Winton M, Takahashi K, Delworth T, Zeng F, Vallis GK (2010) Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J Clim 23:2418–2427. doi: 10.1175/2009JCLI3466.1 CrossRefGoogle Scholar
  18. Herrington T, Zickfeld K (2014) Path independence of climate and carbon cycle response over a broad range of cumulative carbon emissions. Earth Syst Dyn 5:409–422. doi: 10.5194/esd-5-409-2014 CrossRefGoogle Scholar
  19. Joos F, Roth R, Fuglestvedt JS, Peters G, Brovkin V, Eby M, Edwards N, Eleanor B (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmos Chem Phys 13:2793–2825. doi: 10.5194/acp-13-2793-2013 CrossRefGoogle Scholar
  20. Keith DW, Ha-Duong M, Stolaroff JK (2006) Climate strategy with CO\(_{2}\) capture from the air. Clim Change 74:17–45. doi: 10.1007/s10584-005-9026-x CrossRefGoogle Scholar
  21. Krasting JP, Dunne JP, Shevliakova E, Stouffer R (2014) Trajectory sensitivity of the transient climate response to cumulative carbon emissions. Geophys Res Lett 41:2520–2527. doi: 10.1002/2013GL059141 CrossRefGoogle Scholar
  22. Lackner KS (2009) Capture of carbon dioxide from ambient air. Eur Phys J Spec Topics 176:93–106. doi: 10.1140/epjst/e2009-01150-3 CrossRefGoogle Scholar
  23. MacDougall AH (2016) The transient response to cumulative CO\(_{2}\) emissions: a review. Curr Clim Change Rep 2:39–47. doi: 10.1007/s40641-015-0030-6 CrossRefGoogle Scholar
  24. MacDougall AH, Friedlingstein P (2015) The origin and limits of the near proportionality between climate warming and cumulative CO\(_{2}\) emissions. J Clim 28:4217–4230. doi: 10.1175/JCLI-D-14-00036.1 CrossRefGoogle Scholar
  25. MacDougall AH, Zickfeld K, Knutti R, Matthews HD (2015) Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO\(_{2}\) forcings. Environ Res Lett 10:1–10. doi: 10.1088/1748-9326/10/12/125003 CrossRefGoogle Scholar
  26. Mastrandrea MD, Schneider SH (2004) Probabilistic integrated assessment of “dangerous” climate change. Science 304:571–576. doi: 10.1126/science.1094147
  27. Matthews HD, Gillett NP, Stott PA, Zickfeld K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 459:829–832. doi: 10.1038/nature08047 CrossRefGoogle Scholar
  28. Matthews HD, Solomon S, Pierrehumbert RT (2012) Cumulative carbon as a policy framework for achieving climate stabilization. Philos Trans R Soc Lond A 370:4365–4379. doi: 10.1098/rsta.2012.0064 CrossRefGoogle Scholar
  29. Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame DJ, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2C. Nature (London, United Kingdom) 458:1158–1162. 10.1038/nature08017Google Scholar
  30. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772. doi: 10.1038/nature02771 CrossRefGoogle Scholar
  31. Pierrehumbert RT (2014) Short-lived climate pollution. Ann Rev Earth Planet Sci 42:341–379. doi: 10.1146/annurev-earth-060313-054843 CrossRefGoogle Scholar
  32. Raper SCB, Gregory JM, Stouffer RJ (2002) The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J Clim 15:124–130. doi: 10.1175/1520-0442(2002) 015<0124:TROCSA>2.0.CO;2
  33. Rogelj J, Hare W, Lowe J, van Vuuren DP, Riahi K (2011) Emissions pathways consistent with a 2 C global temperature limit. Nat Clim Change 1:413–418. doi: 10.1038/nclimate1258 CrossRefGoogle Scholar
  34. Seshadri AK (2016) Fast-slow climate dynamics and peak global warming. Clim Dyn. doi: 10.1007/s00382-016-3202-8
  35. Smith P, Davis SJ, Creutzig F, Fuss S, Minx J, Gabrielle B (2016) Biophysical and economic limits to negative CO\(_{2}\) emissions. Nat Clim Change 6:42–50. doi: 10.1038/nclimate2870 CrossRefGoogle Scholar
  36. Stainforth DA, Aina T, Christensen C, Collins M, Faull N, Frame DJ, Kettleborough JA, Knight S (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406. doi: 10.1038/nature03301 CrossRefGoogle Scholar
  37. Stocker TF (2013) The closing door of climate targets. Science 339:280–282. doi: 10.1126/science.1232468 CrossRefGoogle Scholar
  38. Tokarska KB, Gillett NP, Weaver AJ, Arora VK, Eby M (2016) The climate response to five trillion tonnes of carbon, Nature Climate Change, pp 1–6. doi: 10.1038/nclimate3036
  39. Vaughan NE, Lenton TM (2011) A review of climate geoengineering proposals. Clim Change 109:745–790. doi: 10.1007/s10584-011-0027-7 CrossRefGoogle Scholar
  40. Vuuren DPV, Meinshausen M, Plattner G-K, Joos F, Strassmann KM, Smith SJ (2008) Temperature increase of 21st century mitigation scenarios. Proc Natl Acad Sci USA 105:15258–15262. doi: 10.1073/pnas.0711129105 CrossRefGoogle Scholar
  41. Winton M, Takahashi K, Held IM (2010) Importance of ocean heat uptake efficacy to transient climate change. J Clim 23:2333–2344. doi: 10.1175/2009JCLI3139.1 CrossRefGoogle Scholar
  42. Zickfeld K, Eby M, Matthews HD, Weaver AJ (2009) Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc Natl Acad Sci USA 106:16129–16134. doi: 10.1073/pnas.0805800106 CrossRefGoogle Scholar
  43. Zickfeld K, Arora VK, Gillett NP (2012) Is the climate response to carbon emissions path dependent? Geophys Res Lett 39:1–6. doi: 10.1029/2011GL050205 CrossRefGoogle Scholar
  44. Zickfeld K, MacDougall AH, Matthews HD (2016) On the proportionality between global temperature change and cumulative CO\(_{2}\) emissions during periods of net negative CO2 emissions. Environ Res Lett 11:1–9. doi: 10.1088/1748-9326/11/5/055006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Divecha Centre for Climate ChangeIndian Institute of ScienceBangaloreIndia

Personalised recommendations