Climate Dynamics

, Volume 49, Issue 9–10, pp 3309–3326 | Cite as

Influence of ENSO on the Pacific decadal oscillation in CMIP models

  • A. G. Nidheesh
  • Matthieu Lengaigne
  • Jérôme Vialard
  • Takeshi Izumo
  • A. S. Unnikrishnan
  • Christophe Cassou
Article

Abstract

Emerging decadal climate predictions call for an assessment of decadal climate variability in the Coupled Model Intercomparison Project (CMIP) database. In this paper, we evaluate the influence of El Niño Southern Oscillation (ENSO) on Pacific Decadal Oscillation (PDO) in 10 control simulations from the CMIP3 and 22 from the CMIP5 database. All models overestimate the time lag between ENSO forcing and the PDO response. While half of the models exhibit ENSO-PDO correlation which is close to that in observation (>0.5) when the time lag is accounted for, the rest of the models underestimate this relationship. Models with stronger ENSO-PDO correlation tend to exhibit larger PDO-related signals in the equatorial and south Pacific, highlighting the key role of ENSO teleconnection in setting the inter-hemispheric Pacific pattern of the PDO. The strength of the ENSO-PDO relationship is related to both ENSO amplitude and strength of ENSO teleconnection to the North Pacific sea-level pressure variability in the Aleutian Low region. The shape of the PDO spectrum is consistent with that predicted from a combination of direct ENSO forcing, atmospheric stochastic forcing over the North Pacific and the re-emergence process in 27 models out of 32. Given the essential role of ENSO in shaping the Pacific decadal variability, models displaying realistic ENSO amplitude and teleconnections should be preferentially used to perform decadal prediction experiments.

Keywords

ENSO PDO Decadal variability Climate CMIP 

Notes

Acknowledgements

The lead author is supported by financial assistance and research facilities of CSIR-NIO, India. This research was sponsored under the Agence Nationale pour la Recherche (ANR) MORDICUS project ANR-13-SENV-0002. This work was done while ML was a visiting scientist at the CSIR-NIO, under Institut de Recherche pour le Développement (IRD) funding. JV and TI also acknowledge IRD support for regular visits to CSIR-NIO. We thank the anonymous reviewer for the valuable comments that helped to improve the manuscript. This is CSIR-NIO contribution No. 5980.

References

  1. Alexander MA (1990) Simulation of the response of the North Pacific Ocean to the anomalous atmospheric circulation associated with El Niño. Clim Dyn 5:53–65. doi: 10.1007/BF00195853 CrossRefGoogle Scholar
  2. Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137CrossRefGoogle Scholar
  3. Alexander MA, Scott JD (2008) The role of Ekman ocean heat transport in the Northern Hemisphere response to ENSO. J Climate 21:5688–5707CrossRefGoogle Scholar
  4. Alexander MA, Bladé I, Newman M et al (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Climate 15:2205–2231CrossRefGoogle Scholar
  5. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73Google Scholar
  6. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. QJRMS 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  7. Deser C, Blackmon ML (1995) On the relationship between tropical and North Pacific sea surface temperature variations. J Climate 8:1677–1680CrossRefGoogle Scholar
  8. Deser C, Alexander MA, Timlin MS (2003) Understanding the persistence of sea surface temperature anomalies in midlatitudes. J Climate 16:57–72CrossRefGoogle Scholar
  9. Deser C, Phillips AS, Tomas RA et al (2012) ENSO and Pacific decadal variability in the community climate system model version 4. J Climate 25:2622–2651CrossRefGoogle Scholar
  10. Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability*. J Clim 27(6):2271–2296CrossRefGoogle Scholar
  11. Deser C, Terray L, Phillips AS (2016) Forced and internal components of winter air temperature trends over North America during the past 50 years: mechanisms and implications*. J Clim 29(6):2237–2258CrossRefGoogle Scholar
  12. Di Lorenzo E, Schneider N, Cobb KM, Chhak K, Franks PJS, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchister E, Powell TM, Rivere P (2008) North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi: 10.1029/2007GL032838 CrossRefGoogle Scholar
  13. Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706. doi: 10.1029/2009GL037810 CrossRefGoogle Scholar
  14. England MH, McGregor S, Spence P et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227CrossRefGoogle Scholar
  15. Folland CK (2002) Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys Res Lett 29:1643. doi: 10.1029/2001GL014201 CrossRefGoogle Scholar
  16. Frankignoul C, Hasselman K (1977) Stochastic climate models. part 2: application to sea–surface temperature variability and thermocline variability. Tellus 29:284–305CrossRefGoogle Scholar
  17. Furtado JC, Di Lorenzo E, Schneider N (2011) North Pacific decadal variability and climate change in the IPCC AR4 models. J Clim 24:3049–3067. doi: 10.1175/2010JCLI3584.1 CrossRefGoogle Scholar
  18. Garreaud R, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation*. J Climate 12:2113–2123CrossRefGoogle Scholar
  19. Guemas V, Doblas Reyes FJ, Lienert F, et al (2012) Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J Geophys Res. 1984–2012, 117 doi: 10.1029/2012JD018004 Google Scholar
  20. Kaplan A, Cane MA, Kushnir Y, Clement AC (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103(18 567–18):589. doi: 10.1029/97JC01736 Google Scholar
  21. Klein SA, Soden BJ, Lao NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Climate 12:917–932. doi: 10.1175/1520-0442(1999)0122.0.CO;2 CrossRefGoogle Scholar
  22. Knapp KR, Kruk MC, Levinson DH et al (2010) The international best track archive for climate stewardship (IBTrACS). Bull Am Meteorol Soc 91:363–376. doi: 10.1175/2009BAMS2755.1 CrossRefGoogle Scholar
  23. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407CrossRefGoogle Scholar
  24. Kwon M, Yeh SW, Park YG, Lee YK (2012) Changes in the linear relationship of ENSO-PDO under the global warming. Int J Climatol 33:1121–1128. doi: 10.1002/joc.3497 CrossRefGoogle Scholar
  25. Lau NC, Nath MJ (1994) A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J Clim 7:1184–1207CrossRefGoogle Scholar
  26. Lau N-C, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Climate 9:2036–2057CrossRefGoogle Scholar
  27. Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309CrossRefGoogle Scholar
  28. Lienert F, Fyfe JC, Merryfield WJ (2011) Do climate models capture the tropical influences on North Pacific sea surface temperature variability? J Clim 24:6203–6209. doi: 10.1175/JCLI-D-11-00205.1 CrossRefGoogle Scholar
  29. Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective*. J Climate 25:1963–1995. doi: 10.1175/2011JCLI3980.1 CrossRefGoogle Scholar
  30. Mantua NJ, Hare SR, Zhang Y et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  31. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745. doi: 10.1126/science.1132588 CrossRefGoogle Scholar
  32. Meehl GA, Covey C, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  33. Meehl GA, Arblaster JM, Fasullo JT et al (2011) Model-based evidence of deep-ocean heat uptake during surface–temperature hiatus periods. Nat Clim change 1:360–364. doi: 10.1038/nclimate1229 CrossRefGoogle Scholar
  34. Meehl GA, Goddard L, Boer G et al (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95:243–267. doi: 10.1175/BAMS-D-12-00241.1 CrossRefGoogle Scholar
  35. Nakamura H, Lin G, Yamagata T (1997) Decadal climate variability in the north pacific during the recent decades. Bull Am Meteorol Soc 78(10):2215–2225CrossRefGoogle Scholar
  36. Namias J, Born RM (1974) Further studies of temporal coherence in North Pacific Sea surface temperatures. J Geophys Res Oceans (1978–2012) 79:797–798.CrossRefGoogle Scholar
  37. Newman M (2007) Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J Clim 20:2333–2356. doi: 10.1175/JCLI4165.1 CrossRefGoogle Scholar
  38. Newman M (2013) An empirical benchmark for decadal forecasts of global surface temperature anomalies. J Clim 26:5260–5269. doi: 10.1175/JCLI-D-12-00590.1 CrossRefGoogle Scholar
  39. Newman M, Alexander MA, Ault TR et al (2016) The pacific decadal oscillation, revisited. J Clim 29(12):4399–4427CrossRefGoogle Scholar
  40. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Climate 16(23)Google Scholar
  41. Oshima K, Tanimoto Y (2009) An evaluation of reproducibility of the Pacific decadal oscillation in the CMIP3 simulations. JMSJ 87:755–770. doi: 10.2151/jmsj.87.755 CrossRefGoogle Scholar
  42. Park J-H, An SI, Yeh S-W, Schneider N (2013) Quantitative assessment of the climate components driving the pacific decadal oscillation in climate models. Theor Appl Climatol 112:431–445. doi: 10.1007/s00704-012-0730-y CrossRefGoogle Scholar
  43. Pierce DW, Barnett TP, Latif M (2000) Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J Clim 13:1173–1194CrossRefGoogle Scholar
  44. Power S, Tseitkin F, Mehta V, Lavery B (1999) Decadal climate variability in Australia during the twentieth century. Int J Climatol 19(2): 169–184CrossRefGoogle Scholar
  45. Qiu B, Schneider N, Chen S (2007) Coupled decadal variability in the North Pacific: an observationally constrained idealized model*. J Climate 20:3602–3620CrossRefGoogle Scholar
  46. Rayner NA, Parker DE, Horton EB, et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Oceans (1978–2012) 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  47. Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation*. J Climate 18:4355–4357CrossRefGoogle Scholar
  48. Shakun JD, Shaman J (2009) Tropical origins of North and South Pacific decadal variability. Geophys Res Lett 36:L19711. doi: 10.1029/2009GL040313 CrossRefGoogle Scholar
  49. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Climate 21:2283–2296. doi: 10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  50. Storch HV, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  52. Trenberth KE, Branstator GW, Karoly D, et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Oceans (1978–2012) 103:14291–14324. doi: 10.1029/97JC01444 CrossRefGoogle Scholar
  53. Vimont DJ (2005) The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability*. J Clim 18(12):2080–2092CrossRefGoogle Scholar
  54. Woodruff SD, Worley SJ, Lubker SJ et al (2011) ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31:951–967. doi: 10.1002/joc.2103 CrossRefGoogle Scholar
  55. Wu L, Liu Z, Gallimore R et al (2003) Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J Climate 16(8)Google Scholar
  56. Yim BY, Kwon M, Min HS, Kug JS (2014) Pacific decadal oscillation and its relation to the extratropical atmospheric variation in CMIP5. Clim Dyn 44:1521–1540. doi: 10.1007/s00382-014-2349-4 CrossRefGoogle Scholar
  57. Yin X, Gleason BE, Compo GP, Matsui N (2008) The International Surface Pressure Databank (ISPD) land component version 2.2., National Climatic Data Center, Asheville, NC, pp 1–12, 2008Google Scholar
  58. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Climate 10:1004–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • A. G. Nidheesh
    • 1
  • Matthieu Lengaigne
    • 2
    • 3
  • Jérôme Vialard
    • 2
  • Takeshi Izumo
    • 2
    • 3
  • A. S. Unnikrishnan
    • 1
  • Christophe Cassou
    • 4
  1. 1.Physical Oceanography DivisionCSIR-National Institute Of OceanographyDona PaulaIndia
  2. 2.Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, LOCEAN Laboratory, IPSLParisFrance
  3. 3.Indo-French Cell for Water Sciences, IISc-NIO-IITM–IRD Joint International Laboratory, NIOGoaIndia
  4. 4.CNRS-Cerfacs, Global Change and Climate Modelling projectToulouseFrance

Personalised recommendations