Advertisement

Climate Dynamics

, Volume 49, Issue 9–10, pp 3277–3292 | Cite as

Diurnal variability of the global tropical tropopause: results inferred from COSMIC observations

  • K. V. Suneeth
  • Siddarth Shankar DasEmail author
  • Subrata Kumar Das
Article

Abstract

Short and long-term variability of the tropical tropopause controls the exchange of minor constituents between the troposphere and the stratosphere. We present the diurnal variability of the global tropical tropopause altitude and temperature using 7 years of COSMIC observations. The aim of the study is to extract diurnal tropopause signals and their impact on stratosphere-troposphere exchange processes. The possible role of atmospheric tides and convection in controlling the tropopause characteristics are discussed. The most significant and new observation is that in the deep tropics the cold-point tropopause altitude is higher and temperatue is cooler over the land (ocean) during evening to late evening hours (afternoon to early evening). Lower tropopause altitude allows the stratospheric air intrusion into the troposphere during the day time. The combined effect of diurnal tropopause altitude changes and turbulent mixing increases the possibility of stratospheric intrusions. A warmer forenoon tropopause allows increased injection of water vapor from the troposphere to the lower stratosphere. Over the tropical land (ocean), the zonal mean diurnal amplitude is 130–200 m (140–180 m) for tropopause altitude and 0.6–0.9 K (0.6–0.8 K) for tropopause temperature.

Keywords

Tropopause Stratosphere–troposphere exchange Diurnal variability COSMIC 

Notes

Acknowledgements

Authors would like to acknowledge UCAR/CDAAC team for providing the data. Thanks to Director, Space Physics Laboratory (SPL) and Head, Atmospheric Dynamics Branch, SPL for their constant supports extended during this study. The first author KVS thankful to Indian Space Research Organization (ISRO) for providing doctoral fellowship during this study period. Authors would like to sincerely thank both the anonymous reviewers and the editor for their constructive comments and suggestion, which helped the manuscript significantly during the review process.

References

  1. Alexander P, Torre A, Llamedo P, Hierro R (2014) Precision estimation in temperature and refractivity profiles retrieved by GPS radio occultations. J Geophys Res 119:8624–8638CrossRefGoogle Scholar
  2. Biasutti M, Yuter SE, Burleyson CD, Sobel AH (2012) Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim Dyn 39:239–258CrossRefGoogle Scholar
  3. Birner T (2010) Recent widening of the tropical belt from global tropopause statistics: sensitivities. J Geophys Res 115:D23109CrossRefGoogle Scholar
  4. Bolton D (1980) The computation of equivalent potential temperature. Mon Wea Rev 108:1046–1053CrossRefGoogle Scholar
  5. Chapman S, Lindzen RS (1970) Atmospheric tides thermal and gravitational. D Reidel, Dordrecht, Holland, pp 200Google Scholar
  6. Das SS, Jain AR, Kumar KK, Narayana Rao D (2008) Diurnal variability of the tropical tropopause: significance of VHF radar measurements. Radio Sci 43:RS6003CrossRefGoogle Scholar
  7. Das SS, Kumar KK, Uma KN (2010) MST radar investigation on inertia-gravity waves associated with tropical depression in the upper troposphere and lower stratosphere over Gadanki (13.51°N, 79.21°E). J Atmos Sol-Terr Phys 72:1184–1194CrossRefGoogle Scholar
  8. Das SK, Das SS, Chiang CW, Kumar KK, Nee JB (2012) Variability in tropopause height and its temperature on different time scales: An observational study over Banqiao, Taiwan. J Atmos Sol-Terr Phys 81:1–8CrossRefGoogle Scholar
  9. Feng S, Fu Y, Xiao Q (2011) Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data. J Geophys Res 116:D21121CrossRefGoogle Scholar
  10. Forster PM, Shine KP (1999) Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling. Geophys Res Lett 26:3309–3312CrossRefGoogle Scholar
  11. Fueglistaler S, Dessler AE, Dunkerton TJ, Folkins I, Fu Q, Mote PW (2009) Tropical tropopause layer. Rev Geophys 47:RJ1004CrossRefGoogle Scholar
  12. Fujiwara M, Suzuki J, Gettelman A, Hegglin MI, Akiyoshi H, Shibata K (2012) Wave activity in the tropical tropopause layer in seven reanalysis and four chemistry climate model data sets. J Geophys Res 117:D12105CrossRefGoogle Scholar
  13. Gage KS, Reid GC (1985) Response of the tropical tropopause to El Chichon and the El Nino of 1982–1983. Geophys Res Lett 12:195–197CrossRefGoogle Scholar
  14. Gettelman A, Salby ML, Sassi F (2002) Distribution and influence of convection in the tropical tropopause region. J Geophys Res 107:1–12Google Scholar
  15. Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res 109:06109CrossRefGoogle Scholar
  16. Highwood EJ, Hoskins BJ (1998) The tropical tropopause. Q J R Meteorol Soc 124:1579–1604CrossRefGoogle Scholar
  17. Holton JR, Haynes PH, Mcintyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439CrossRefGoogle Scholar
  18. Jain AR, Das SS, Mandal TK, Mitra AP (2006) Observations of extremely low tropopause temperature over the Indian tropical region during monsoon and post-monsoon months: possible implications. J Geophys Res 111:D07106Google Scholar
  19. Janowiak JE, Joyce RJ, Yarosh Y (2001) A real–time global half–hourly pixel–resolution infrared dataset and its applications. Bull Amer Meteor Soc 82:205–217CrossRefGoogle Scholar
  20. Khaykin SM, Pommereau JP, Hauchecorne A (2013) Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultation. Atmos Chem Phys 13:6391–6402CrossRefGoogle Scholar
  21. Kirk-Davidoff DB, Hintsa EJ, Anderson JG, Keith DW (1999) The effect of climate change on ozone depletion through changes in stratospheric water vapor. Nature 402:399–401CrossRefGoogle Scholar
  22. Kishore P, Namboothiri SP, Jiang JH, Sivakumar V, Igarashi K (2009) Global temperature estimates in the troposphere and stratosphere: a validation study of COSMIC/FORMOSAT-3 measurements. Atmos Chem Phys 9:897–908CrossRefGoogle Scholar
  23. Kuo Y, Wee T, Sokolovskiy S, Rocken C, Schreiner W, Hunt DC, Anthes RA (2004) Inversion and error estimation of GPS Radio Occultation data. J Meteorol Soc Japan 82:507–531CrossRefGoogle Scholar
  24. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res 102:23429–23465CrossRefGoogle Scholar
  25. Liu Y, Xu T, Liu J (2014) Characteristics of the seasonal variation of the global tropopause revealed by COSMIC/GPS data. Adv Space Res 54:2274–2285CrossRefGoogle Scholar
  26. Livesey NJ, Read WG, Froidevaux L, Lambert A, Manney GL, Pumphrey HC et al (2011) EOS MLS version V3.3 level 2 data quality and description document. Jet Propul Lab Pasadena, CA. http://mls.jpl.nasa.gov
  27. Meenu S, Rajeev K, Parameswaran K, Nair AKM (2010) Regional distribution of deep clouds and cloud top altitudes over the Indian subcontinent and the surrounding oceans. J Geophys Res 115:D05205CrossRefGoogle Scholar
  28. Pirscher B, Foelsche U, Lackner BC, Kirchengast G (2007) Local time influence in single-satellite radio occultation climatologies from Sun-synchronous and non-Sun-synchronous satellites. J Geophys Res 112:D11119CrossRefGoogle Scholar
  29. Rieckh T, Scherllin-Pirscher B, Ladstädter F, Foelsche U (2014) Characteristics of tropopause parameters as observed with GPS radio occultation. Atmos Meas Tech 7:3947–3958CrossRefGoogle Scholar
  30. Rind D, Lonergan P (1995) Modeled impacts of stratospheric ozone and water vapor perturbations with implications for high-speed civil transport aircraft. J Geophys Res 100:7381–7396CrossRefGoogle Scholar
  31. Scott RK, Cammas JP (2002) Wave breaking and mixing at the subtropical tropopause. J AtmosSci 59:2347–2361CrossRefGoogle Scholar
  32. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111:D21101CrossRefGoogle Scholar
  33. Seidel DJ, Ross RJ, Angell JK, Reid GC (2001) Climatological characteristics of the tropical tropopause as revealed by radiosondes. J Geophys Res 106:7857–7878CrossRefGoogle Scholar
  34. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24Google Scholar
  35. Shimizu A, Tsuda T (2000) Variations in tropical tropopause observed with radiosondes in Indonesia. Geophys Res Lett 27:2541–2544CrossRefGoogle Scholar
  36. Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. J Res Natl Bur Stand 50:39–41CrossRefGoogle Scholar
  37. Thuburn J, Craig GC (2002) On the temperature structure of the tropical substratosphere. J Geophys Res 107:D2CrossRefGoogle Scholar
  38. Tian B, Soden BJ, Wu X (2004) Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellite versus a general circulation model. J Geophys Res 109:D10101CrossRefGoogle Scholar
  39. Tsuda T, Murayama Y, Wiryosumarto H, Harijono SWB, Kato S (1994) Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 1. Equatorial waves and diurnal tides. J Geophys Res 99:10491–10505CrossRefGoogle Scholar
  40. Tsuda T, Lin X, Hayashi H, Noersomadi (2011) Analysis of vertical wave number spectrum of atmospheric gravity waves in the stratosphere using COSMIC GPS radio occultation data. Atmos Meas Tech 4:1627–1636CrossRefGoogle Scholar
  41. Uma KN, Das SS (2016) Quantitative and qualitative assessment of diurnal variability in tropospheric humidity using SAPHIR on-board Megha-Tropiques. J Atmos Sol-Terr Phys 146:89–100CrossRefGoogle Scholar
  42. Uma KN, Das SK, Das SS, Kumar KK (2013a) Aura-MLS observations of water vapor entering the stratosphere over the Northern bay of Bengal and East Equatorial Indian Ocean. Terr Atmos Ocean Sci 24:357–368Google Scholar
  43. Uma KN, Kumar KK, Das SS (2013b) Migrating and non-migrating diurnal and semi-diurnal tides over a tropical and an equatorial station. Indian J Radio and Space Phys 42:340–355Google Scholar
  44. Uma KN, Das SK, Das SS (2014) A climatological perspective of water vapor at the UTLS region over different global monsoon regions: observations inferred from the Aura-MLS and reanalysis data. Clim Dyn 43:407–420CrossRefGoogle Scholar
  45. World Meteorological Organization (WMO) (1957) Meteorology-a three-dimensional science: second session of the commission for aerology. WMO Bull IV(4):134–138Google Scholar
  46. Xian T, Fu, Y (2015) Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements. J Geophys Res 120:7006–7024CrossRefGoogle Scholar
  47. Xie F, Wu DL, Ao CO, Mannucci AJ (2010) Atmospheric diurnal variations observed with GPS radio occultation soundings. Atmos Chem Phys 10:6889–6899CrossRefGoogle Scholar
  48. Yamamoto Masayuki K, Oyamatsu Masayuki, Horinouchi Takeshi, Hashiguchi Hiroyuki, Fukao Shoichiro (2003) High time resolution determination of the tropical tropopause by the equatorial atmosphere radar. Geophys Res Lett 30:2094CrossRefGoogle Scholar
  49. Zhang X, Forbes JM, Hagan ME, Russell JM III, Palo SE, Mlynczak M (2006) Monthly tidal temperatures 20–120 km from TIMED/SABER. J Geophys Res 111:A10208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Space Physics LaboratoryVikram Sarabhai Space Centre, ISRO POTrivandrumIndia
  2. 2.PM & A DivisionIndian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations