Climate Dynamics

, Volume 49, Issue 9–10, pp 3237–3255 | Cite as

Cloud-radiation-precipitation associations over the Asian monsoon region: an observational analysis

  • Jiandong Li
  • Wei-Chyung Wang
  • Xiquan Dong
  • Jiangyu Mao
Article

Abstract

This study uses 2001–2014 satellite observations and reanalyses to investigate the seasonal characteristics of Cloud Radiative Effects (CREs) and their associations with cloud fraction (CF) and precipitation over the Asian monsoon region (AMR) covering Eastern China (EC) and South Asia (SA). The CREs exhibit strong seasonal variations but show distinctly different relationships with CFs and precipitation over the two regions. For EC, the CREs is dominated by shortwave (SW) cooling, with an annual mean value of − 40 W m− 2 for net CRE, and peak in summer while the presence of extensive and opaque low-level clouds contributes to large Top-Of-Atmosphere (TOA) albedo (>0.5) in winter. For SA, a weak net CRE exists throughout the year due to in-phase compensation of SWCRE by longwave (LW) CRE associated with the frequent occurrence of high clouds. For the entire AMR, SWCRE strongly correlates with the dominant types of CFs, although the cloud vertical structure plays important role particularly in summer. The relationships between CREs and precipitation are stronger in SA than in EC, indicating the dominant effect of monsoon circulation in the former region. SWCRE over EC is only partly related to precipitation and shows distinctive regional variations. Further studies need to pay more attention to vertical distributions of cloud micro- and macro-physical properties, and associated precipitation systems over the AMR.

Keywords

Cloud radiative effect Cloud fraction Precipitation Asian monsoon region Seasonal variation 

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J Hydrometeor 4:1147–1167CrossRefGoogle Scholar
  2. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  3. Austin RT, Heymsfield AJ, Stephens GL (2009) Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J Geophys Res 114:D00A23. doi:10.1029/2008JD010049 CrossRefGoogle Scholar
  4. Bennartz R, Fan J, Rausch J, Leung LR, Heidinger AK (2011) Pollution from China increases cloud droplet number, suppresses rain over the East China Sea. Geophys Res Lett 38:L09704. doi:10.1029/2011GL047235 Google Scholar
  5. Bony S, Lau KM, Sud YC (1997) Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J Clim 10:2055–2077CrossRefGoogle Scholar
  6. Bony S, Colman R, Kattsov VM et al (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482CrossRefGoogle Scholar
  7. Boo K-O, Martin G, Sellar A, Senior C, Byun Y-H (2011) Evaluating the East Asian monsoon simulation in climate models. J Geophys Res 116. doi:10.1029/2010jd014737 Google Scholar
  8. Boucher O, Randall D, Artaxo P et al (2013) Clouds and aerosols. In: Stocker et al (ed) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University, Cambridge and New York, pp 571–658Google Scholar
  9. Cesana G, Chepfer H (2012) How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys Res Lett 39:L20803. doi:10.1029/2012GL053153 Google Scholar
  10. Cess RD, Potter GL, Blanchet JP et al (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95(D10):16601–16615. doi:10.1029/JD095iD10p16601 CrossRefGoogle Scholar
  11. Chen B, Liu X (2005) Seasonal migration of cirrus clouds over the Asian Monsoon regions and the Tibetan Plateau measured from MODIS/Terra. Geophys Res Lett 32:L01804. doi:10.1029/2004GL020868 CrossRefGoogle Scholar
  12. Chepfer H, Bony S, Winker D, Cesana G, Dufresne J, Minnis P, Stubenrauch C, Zeng S (2010) The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J Geophys Res 115:D00H16. doi:10.1029/2009JD012251 CrossRefGoogle Scholar
  13. Clement AC, Burgman R, Norris JR (2009) Observational and model evidence for positive low-level cloud feedback. Science 325:460–464CrossRefGoogle Scholar
  14. Dee DP, Uppala SM, Simmons AJ et al. (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137:553–597CrossRefGoogle Scholar
  15. Ding Y (2007) The variability of the Asian summer monsoon. J Meteorol Soc Jpn 85B:21–54CrossRefGoogle Scholar
  16. Ding Y, Chan JC (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89(1–4):117–142Google Scholar
  17. Doelling DR, Loeb NG, Keyes DF, Nordeen ML, Morstad D, Nguyen C, Wielicki BA, Young DF, Sun M (2013) Geostationary enhanced temporal interpolation for CERES flux products. J Atmos Ocean Technol 30:1072–1090CrossRefGoogle Scholar
  18. Dolinar EK, Dong XQ, Xi BK, Jiang JH, Sui H (2015) Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Clim Dyn 44(7–8):2229–2247CrossRefGoogle Scholar
  19. Flato G, Marotzke J, Abiodun B et al (2013) Evaluation of Climate Models. In: Stocker et al (ed) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University, Cambridge and New York, pp 571–658Google Scholar
  20. Guo Z, Zhou TJ (2015) Seasonal variation and physical properties of the cloud system over southeastern China derived from CloudSat products. Adv Atmos Sci 32(5): 659–670CrossRefGoogle Scholar
  21. Hartman DL, Moy LA, Fu Q (2001) Torpical convection and the energy balance at the top of the atmosphere. J Clim 14:4495–4511CrossRefGoogle Scholar
  22. Hartmann DL, Ockert-Bell ME, Michelson ML (1992) The effect of cloud type on earth’s energy balance: Global analysis. J Clim 5:1281–1304CrossRefGoogle Scholar
  23. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000 CrossRefGoogle Scholar
  24. Jiang JH, Su H, Zhai C, Perun VS, Genio AD, Nazarenko LS, Donner LJ, Horowitz L, Seman C, Cole J (2012) Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J Geophys Res 117:D14105. doi:10.1029/2011JD017237 Google Scholar
  25. Kiehl JT (1994) On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J Clim 7:559–565CrossRefGoogle Scholar
  26. L’Ecuyer TS, Beaudoingb HK, Rodell M et al (2015) The observed state of the energy budget in the early twenty-first century. J Clim 28:8319–8346CrossRefGoogle Scholar
  27. Li Y, Gu H (2006) Relationship between middle stratiform clouds and large scale circulation over eastern China. Geophys Res Lett 33:L09706. doi:10.1029/2005GL025615 Google Scholar
  28. Li J, Liu Y, Wu G (2009) Cloud radiative forcing in Asian monsoon region simulated by IPCC AR4 AMIP models. Adv Atmos Sci 26:923–939CrossRefGoogle Scholar
  29. Li J-L, Waliser DE, Stephens G et al (2013) Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J Geophys Res 118:8166–8184. doi:10.1002/jgrd.50378 Google Scholar
  30. Liu J, Li Z, Zheng Y, Chiu C, Zhao F, Li C, Cribb M (2013) Cloud optical and microphysical properties derived from ground-based remote sensing over a site in the Yangtze Delta Region. J Geophys Res Atmos, doi:10.1002/jgrd.50648 Google Scholar
  31. Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J Clim 22:748–766CrossRefGoogle Scholar
  32. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, Stephens GL (2012a) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5:110–113. doi:10.1038/NGEO1375
  33. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, and Stephens GL (2012b) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5(2):110–113Google Scholar
  34. Luo Y, Zhang R, Wang H (2009) Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat/CALIPSO data. J Clim 22:1052–1064CrossRefGoogle Scholar
  35. Luo Y, Zhang R, Qian W, Luo Z, Hu X (2011) Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J Clim 24:2164–2177CrossRefGoogle Scholar
  36. Luo Y, Wang H, Zhang R, Qian W, Luo Z (2013) Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and Yangtze-and-Huai River Basin. J Clim 26:110–132CrossRefGoogle Scholar
  37. Mace GG, Zhang Q, Vaughan M, Marchand R, Stephens G, Trepte C, Winker D (2009) A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J Geophys Res 114:D00A26. doi:10.1029/2007JD009755 CrossRefGoogle Scholar
  38. Minnis P, Sun-Mack S, Young DF, Heck PW, Garber DP, Chen Y et al (2011a) CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: algorithms. IEEE Trans Geosci Remote Sens 49:4374–4400Google Scholar
  39. Minnis P, Sun-Mack S, Chen Y, Khaiyer MM, Yi Y, Ayers JK et al (2011b) CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part II: examples of average results and comparisons with other data. IEEE Trans Geosci Remote Sens 49:4401–4430Google Scholar
  40. Rajeevan M, Srinivasan J (2000) Net Cloud Radiative Forcing at the Top of the Atmosphere in the Asian Monsoon Region. J Clim 13:650–657CrossRefGoogle Scholar
  41. Rajeevan M, Nanjundiah R (2010) Coupled model simulations of twentieth century climate of the Indian summer monsoon. In: Current trends in science, Indian Academy of Sciences. Platinum Jubilee Publication, Bangalore, pp 537–567Google Scholar
  42. Rajeevan M, Rohini P, Niranjan Kumar K, Srinivasan J, Unnikrishnan CK (2013) A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim Dyn 40:637–650CrossRefGoogle Scholar
  43. Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science 243:57–63CrossRefGoogle Scholar
  44. Randall DA et al (2007) Climate models and their evaluation. In: S. Solomon et al (eds.) Climate change 2007: the physical science basis Cambridge University, CambridgeGoogle Scholar
  45. Ravi KV, Rajeevan M, Gadhavi H, Rao SVB, Jayaraman A (2015) Role of vertical structure of cloud microphysical properties on cloud radiative forcing over the Asian monsoon region. Clim Dyn. doi:10.1007/s00382-015-2542-0 Google Scholar
  46. Rogers RR and Yau MK (1989) A Short Course in Cloud Physics. Butterworth-Heinemann, p 304Google Scholar
  47. Romatschke U, Houze RA Jr (2011) Characteristics of precipitating convective systems in the South Asian monsoon. J Hydrometeor 12:157–180CrossRefGoogle Scholar
  48. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2288CrossRefGoogle Scholar
  49. Sikka D, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon Weather Rev 108:1840–1853CrossRefGoogle Scholar
  50. Simmons AJ, Willett KM, Jones PD, et al. (2010) Low frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J Geophys Res 115, doi:10.1029/2009JD012442 Google Scholar
  51. Simmons AJ, Poli P, Dee DP, Berrisford P, Hersbach H, Kobayashib S, Peubey C (2014) Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim. Q J R Meteorol Soc 140:329–353. doi:10.1002/qj.2317 CrossRefGoogle Scholar
  52. Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18(2):237–273CrossRefGoogle Scholar
  53. Stevens B, Bony S (2013) What are climate models missing? Science 340:1053–1054. doi:10.1126/science.1237554 CrossRefGoogle Scholar
  54. Stubenrauch C, Rossow W, Kinne S, Ackerman S, Cesana G, Chepfer H, Di Girolamo L, Getzewich B, Guignard A, Heidinger A (2013) Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull Am Meteorol Soc 94(7):1031–1049CrossRefGoogle Scholar
  55. Tao SY, Chen LX (1987) A review of recent research on the East Asian summer monsoon in China. In: Meteorology Monsoon (ed.) CP Chang, TN Krishnamurti. Oxford Univ. Press, Oxford, pp 60–92Google Scholar
  56. Tao WK, Chen JP, Li Z, Wang C, Zhang C (2012) Impact of aerosols on convective clouds and precipitation. Rev Geophys 50:RG2001. doi:10.1029/2011RG000369 CrossRefGoogle Scholar
  57. Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90(3):311–323. doi:10.1175/2008bams2634.1 CrossRefGoogle Scholar
  58. Twomey SA (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152CrossRefGoogle Scholar
  59. Wang B (2006) The Asian Monsoon. Springer/Praxis, New York, p 450Google Scholar
  60. Wang WC, Gong W, Kau WS, Chen CT, Hsu HH, Tu CH (2004) Characteristics of cloud radiation forcing over East China. J Clim 17(4):845–853CrossRefGoogle Scholar
  61. Wang F, Yang S, Wu T (2014) Radiation budget biases in AMIP5 models over the East Asian monsoon region. J Geophys Res Atmos 119:13400–13426. doi:10.1002/2014JD022243 CrossRefGoogle Scholar
  62. Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510CrossRefGoogle Scholar
  63. Wild M, Folini D, Schar C, Loeb N, Dutton EG, Langlo GK (2013) The global energy balance from a surface perspective. Clim Dyn 40(11–12):3107–3134Google Scholar
  64. Wood R, Bretherton CS (2006) On the relationship between stratiform low cloud cover and lower-tropospheric stability. J Clim 19:6425–6432CrossRefGoogle Scholar
  65. Wu G, Liu Y, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang XY (2007) The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J Hydrometeorol 8:770–789CrossRefGoogle Scholar
  66. Yin P, Gruber A, Arkin P (2004) Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979–2001. J Hydrometeorol 5:1207–1222CrossRefGoogle Scholar
  67. Yu R, Yu Y, Zhang M (2001) Comparing cloud radiative properties between the eastern China and the Indian monsoon region. Adv Atmos Sci 18(6):1090–1102Google Scholar
  68. Yu R, Wang B, Zhou T (2004) Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J Clim 17(13):2702–2713CrossRefGoogle Scholar
  69. Zhang Y, Yu R, Li J, Yuan W, Zhang M (2013) Dynamic and thermodynamic relations of distinctive stratus clouds on the lee side of the Tibetan Plateau in the cold season. J Clim 26(21):8378–8391CrossRefGoogle Scholar
  70. Zhu QG, Lin JR, Shou SW, Tang DS (2007) The weather principles and methods. Meteorological Press, Beijing, p 649Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jiandong Li
    • 1
    • 2
  • Wei-Chyung Wang
    • 3
  • Xiquan Dong
    • 4
    • 5
  • Jiangyu Mao
    • 1
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)Institute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Atmospheric Sciences Research CenterState University of New YorkAlbanyUSA
  4. 4.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  5. 5.Department of Hydrology and Atmospheric SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations