Advertisement

Climate Dynamics

, Volume 51, Issue 11–12, pp 4601–4617 | Cite as

Future changes in precipitation over East Asia projected by the global atmospheric model MRI-AGCM3.2

  • Shoji KusunokiEmail author
Article

Abstract

We conducted global warming projections using global atmospheric models with high-horizontal resolution of 20-km (MRI-AGCM3.2S, the 20-km model) and 60-km (MRI-AGCM3.2H, the 60-km model) grid sizes. For the present-day climate of 21 years from 1983 to 2003, models were forced with observed historical sea surface temperatures (SST). For the future climate of 21 years from 2079 to 2099, models were forced with future SST distributions projected by the models of the Fifth phase of Couple Model Intercomparison Project (CMIP5). Ensemble simulations for four different SST distributions and three different cumulus convection schemes were conducted to evaluate the uncertainty of projection. The simulations consistently project the increase of precipitation over eastern China for almost all months. In June, precipitation decreases over Japan and increases over the ocean to the south of Japan. The geographical distribution of precipitation change tends to depend relatively on the cumulus convection scheme and horizontal resolution of models rather than on SST distributions. The time evolution of pentad mean precipitation over Japan indicates the delay in the onset of Japanese rainy season in June. This delay can be attributed to the decrease of water vapor transport toward Japan associated with the southward shift of the subtropical high. Change in the subtropical high can be interpreted as the southward shift of the local Hadley circulation. The intensity of precipitation increases over most part of East Asia, while the possibility of drought will increase over Japan, the East China Sea and the area to the south of Japan.

Keywords

Precipitation East Asia Global warming projection Japanese rainy season 

Notes

Acknowledgement

This work was conducted under the framework of “The Development of Basic Technology for Risk Information on Climate Change” supported by the SOUSEI Program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. We also thank anonymous reviewers whose valuable comments and suggestions greatly improved the manuscript. Thanks are extended to the support and collaboration by Drs. R. Mizuta, K. Yoshida, O. Arakawa, T. Ose, A. Kitoh and I. Takayabu.

Supplementary material

382_2016_3499_MOESM1_ESM.docx (594 kb)
Supplementary material 1 (DOCX 594 KB)

References

  1. Adler RF, Huffman GJ, Chang A, Ferrano R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology preject (GPCP) monthly precipitation analysis (1979–present). J Hydrometeor 4:1147–1167. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 CrossRefGoogle Scholar
  2. Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301. doi: 10.1175/2008JCLI2678.1 CrossRefGoogle Scholar
  3. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Sect. 12; long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  4. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630. doi: 10.1175/JCLI3884.1 CrossRefGoogle Scholar
  5. Endo H, Kitoh A, Ose T, Mizuta R, Kusunoki S (2012) Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J Geophys Res 117:D16118. doi: 10.1029/2012JD017874 CrossRefGoogle Scholar
  6. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Sect. 9; evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  7. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi: 10.3354/cr019193 CrossRefGoogle Scholar
  8. Gao X, Xu Y, Zhao Z, Pal JS, Giorgi F (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185. doi: 10.1007/s00704-005-0214-4 CrossRefGoogle Scholar
  9. Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeor 2:36–50. doi: 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 CrossRefGoogle Scholar
  10. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55. doi: 10.1175/JHM560.1 CrossRefGoogle Scholar
  11. IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, pp 996Google Scholar
  12. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, pp 1535Google Scholar
  13. IPCC (Intergovermental Panel on Climate Change) (2000) Special report on emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. In: Nakicenovic N, Alcamo J, Davis G, deVries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Yong Jung T, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (eds) Cambridge University Press, Cambridge, pp 599Google Scholar
  14. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802. doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2 CrossRefGoogle Scholar
  15. Kamiguchi K, Kitoh A, Uchiyama T, Mizuta R, Noda A (2006) Changes in precipitation-based extremes indices due to global warming projected by a global 20-km-mesh atmospheric model. SOLA 2:64–67. doi: 10.2151/sola.2006-017 CrossRefGoogle Scholar
  16. Kanada S, Nakano M, Hayashi S, Kato T, Nakamura M, Kurihara K, Kitoh A (2008) Reproducibility of maximum daily precipitation amount over Japan by a high-resolution non-hydrostatic model. SOLA 4:105–108. doi: 10.2151/sola.2008-027 CrossRefGoogle Scholar
  17. Kang IS, Jin K, Wang B, Lau KM, Shukla J, Krishnamurthy V, Schubert SD, Wailser DE, Stern WF, Kitoh A, Meehl GA, Kanamitsu M, Galin VY, Satyan V, Park CK, Liu Y (2002) Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim Dyn 19:383–395. doi: 10.1007/s00382-002-0245-9 CrossRefGoogle Scholar
  18. Kim S, Nakakita E, Tachikawa Y, Takara K (2010) Precipitation changes in Japan under the A1B climate change scenario. Ann J Hydraul Eng 54:127–132Google Scholar
  19. Kitoh A, Kusunoki S (2008) East Asian summer monsoon simulation by a 20-km mesh AGCM. Clim Dyn 31:389–401. doi: 10.1007/s00382-007-0285-2 CrossRefGoogle Scholar
  20. Kitoh A, Ose T, Kurihara K, Kusunoki S, Sugi M, KAKUSHIN Team-3 Modeling Group (2009) Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: results of preliminary experiments. Hydrol Res Lett 3:49–53. doi: 10.3178/HRL.3.49 CrossRefGoogle Scholar
  21. Kusunoki S (2016) Is the global atmospheric model MRI-AGCM3.2 better than the CMIP5 atmospheric models in simulating precipitation over East Asia? Clim Dyn. doi: 10.1007/s00382-016-3335-9 (Online on 16 Sept 2016)CrossRefGoogle Scholar
  22. Kusunoki S, Arakawa O (2012) Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Clim Dyn 38:2055–2072. doi: 10.1007/s00382-011-1234-7 CrossRefGoogle Scholar
  23. Kusunoki S, Arakawa O (2015) Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J Clim 28:5601–5621. doi: 10.1175/JCLI-D-14-00585.1 CrossRefGoogle Scholar
  24. Kusunoki S, Mizuta R (2008) Future changes in the Baiu rain band projected by a 20-km mesh global atmospheric model: sea surface temperature dependence. SOLA 4:85–88. doi: 10.2151/sola.2008-022 CrossRefGoogle Scholar
  25. Kusunoki S, Mizuta R (2012) Comparison of near future (2015–2039) changes in the East Asian rain band with future (2075–2099) changes projected by global atmospheric models with 20-km and 60-km grid size. SOLA 8:73–76. doi: 10.2151/sola.2012-019 CrossRefGoogle Scholar
  26. Kusunoki S, Mizuta R (2013) Changes in precipitation intensity over East Asia during the 20th and 21st centuries simulated by a global atmospheric model with a 60 km grid size. J Geophys Res Atmos 118:11007–11016. doi: 10.1002/jgrd.50877 CrossRefGoogle Scholar
  27. Kusunoki S, Sugi M, Kitoh A, Kobayashi C, Takano K (2001) Atmospheric seasonal predictability experiments by the JMA AGCM. J Meteor Soc Jpn 79:1183–1206. doi: 10.2151/jmsj.79.1183 CrossRefGoogle Scholar
  28. Kusunoki S, Yoshimura J, Yoshimura H, Noda A, Oouchi K, Mizuta R (2006) Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J Meteor Soc Jpn 84:581–611. doi: 10.2151/jmsj.84.581 CrossRefGoogle Scholar
  29. Kusunoki S, Mizuta R, Matsueda M (2011) Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size. Clim Dyn 37:2481–2493. doi: 10.1007/s00382-011-1000-x CrossRefGoogle Scholar
  30. Lau KM, Yang S (1996) Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J Clim 9:965–985. doi: 10.1175/1520-0442(1996)009<0965:SVATAI>2.0.CO;2 CrossRefGoogle Scholar
  31. Lau KM, Kim JH, Sud Y (1996) Intercomparison of hydrologic processes in AMIP GCMs. Bull Am Meteor Soc 77:2209–2227. doi: 10.1175/1520-0477(1996)077<2209:IOHPIA>2.0.CO;2 CrossRefGoogle Scholar
  32. Liang XZ, Wang WC (1998) Associations between China monsoon rainfall and tropospheric jets. Q J R Meteorol Soc 124:2597–2623CrossRefGoogle Scholar
  33. Liang XZ, Wang WC, Samel AN (2001) Biases in AMIP model simulations of the east China monsoon system. Clim Dyn 17:291–304. doi: 10.1007/s003820000136 CrossRefGoogle Scholar
  34. Liu S, Gao W, Liang XZ (2013) A regional climate model downscaling projection of China future climate change. Clim Dyn 41:1871–1884. doi: 10.1007/s00382-012-1632-5 CrossRefGoogle Scholar
  35. Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213. doi: 10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  36. Mizuta R, Adachi Y, Yukimoto S, Kusunoki S (2008) Estimation of the future distribution of sea surface temperature and sea ice using the CMIP3 multi-model ensemble mean. Technical reports of the Meteorological Research Institute, vol 56, pp 1–28Google Scholar
  37. Mizuta R, Yoshimura H, Murakami H, Matsueda M, Endo H, Ose T, Kamiguchi K, Hosaka M, Sugi M, Yukimoto S, Kusunoki S, Kitoh A (2012) Climate simulations using MRI-AGCM3.2 with 20-km grid. J Meteor Soc Jpn 90A:233–258. doi: 10.2151/jmsj.2012-A12 CrossRefGoogle Scholar
  38. Mizuta R, Arakawa O, Ose T, Kusunoki S, Endo H, Kitoh A (2014) Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA 10:167–171. doi: 10.2151/sola.2014-035 CrossRefGoogle Scholar
  39. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  40. Ogata T, Ueda H, Inoue T, Hayasaki M, Yoshida A, Watanabe S, Kira M, Ooshiro M, Kumai A (2014) Projected future changes in the Asian monsoon: a comparison of CMIP3 and CMIP5 model results. J Meteor Soc Jpn 92:207–225. doi: 10.2151/jmsj.2014-302 CrossRefGoogle Scholar
  41. Randall DA, Pan DM (1993) Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. In: The representation of cumulus convection in numerical models, Meteorological Monographs, Chap. 11, vol 24 (46): 137–147Google Scholar
  42. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Sect. 8; climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  43. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108 (D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  44. Shibata K, Deushi M, Sekiyama TT, Yoshimura H (2004) Development of an MRI chemical transport model for the study of stratospheric chemistry. Pap Meteor Geophys 55:75–119. doi: 10.2467/mripapers.55.75 CrossRefGoogle Scholar
  45. Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner AG, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi: 10.1007/S00382-012-1607-6 CrossRefGoogle Scholar
  46. Storch HV, Zwiers FW (1999) Sect. 9 analysis of variance. In: Storch HV, Zwiers FW (eds) Statistical analysis in climate research. Cambridge University Press, Cambridge, pp 171–192CrossRefGoogle Scholar
  47. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 CrossRefGoogle Scholar
  48. Tu K, Yan ZW, Zhang XB, Dong WJ (2009) Simulation of precipitation in monsoon regions of China by CMIP3 models. Atmos Ocean Sci Lett 2:194–200.CrossRefGoogle Scholar
  49. Wang B, Ho L (2002) Rainy season of the Asian–Pacific summer monsoon. J Clim 15:386–398. doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2 CrossRefGoogle Scholar
  50. Xie P, Arkin P (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteor Soc 78:2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2 CrossRefGoogle Scholar
  51. Yatagai A, Arakawa O, Kamiguchi K, Kawamoto H, Nodzu MI, Hamada A (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA 5:137–140. doi: 10.2151/sola.2009-035 CrossRefGoogle Scholar
  52. Yoshimura H, Mizuta R, Murakami H (2015) A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-lagrangian calculation of transport by compensatory subsidence. Mon Wea Rev 143:597–621. doi: 10.1175/MWR-D-14-00068.1 CrossRefGoogle Scholar
  53. Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka T, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological Research Institute–earth system model version 1 (MRI-ESM1)—model description. Technical reports of the Meteorological Research Institute 64: 88Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Climate Research DepartmentMeteorological Research InstituteTsukubaJapan

Personalised recommendations