Climate Dynamics

, Volume 49, Issue 9–10, pp 2975–2990 | Cite as

Hindcast skill for the Atlantic meridional overturning circulation at 26.5°N within two MPI-ESM decadal climate prediction systems

  • Vasco MüllerEmail author
  • Holger Pohlmann
  • André Düsterhus
  • Daniela Matei
  • Jochem Marotzke
  • Wolfgang A. Müller
  • Mathias Zeller
  • Johanna Baehr


We analyse the hindcast skill for the Atlantic meridional overturning circulation (AMOC) against 10 years of RAPID/MOCHA AMOC observations, which are now long enough to remove the mean seasonal cycle prior to the hindcast skill analysis. We analyse AMOC hindcast skill in two hindcast ensembles generated with two differently initialised decadal prediction systems that are both based on the earth system model MPI-ESM. We evaluate the hindcast skill for the AMOC and its components in both prediction systems against RAPID/MOCHA observations both with and without the mean seasonal cycle removed using anomaly correlation (COR) and root-mean-square error as skill measures. We find significant hindcast skill for most lead years up to 5 for monthly-mean AMOC variations only in the newer of the two prediction systems and only using COR, but with and without the mean seasonal cycle removed. In both systems and for all analysed lead years, the two geostrophic transport components (the upper-mid-ocean transport and Florida Strait combined, that is: AMOC minus Ekman) are the main source of hindcast skill. In the present model setup and with the currently available observational time series, we cannot relate AMOC hindcast skill to the upper-mid-ocean transport alone. Yet, we can show that the seasonal variability of the upper-mid-ocean transport in the free coupled model originates from eastern boundary density variability. Overall, our results indicate modest yet robust AMOC hindcast skill above the uninitialized simulation, independent of the treatment of the seasonal cycle, although we cannot directly link this hindcast skill to the initialisation of the density field with either initialisation method.


Decadal predictions Meridional overturning circulation Hindcast skill 



We thank two anonymous reviewers for their valuable and helpful comments. This research has been supported by the Cluster of Excellence ‘CliSAP’ (EXC177), University of Hamburg, funded through the German Science Foundation (DFG) (VM, AD, JB), and by the German Federal Ministry for Education and Research (BMBF) projects MiKlip ( (HP, WM) and RACE ( (DM). The climate simulations were performed at the German Climate Computing Centre (DKRZ). Data from the RAPID-WATCH MOC monitoring project are funded by the Natural Environment Research Council and are freely available from


  1. Baehr J, Hirschi J, Beismann JO, Marotzke J (2004) Monitoring the meridional overturning circulation in the North Atlantic: a model-based array design study. J Mar Res 62(3):283–312. doi: 10.1357/0022240041446191 CrossRefGoogle Scholar
  2. Baehr J, Cunnningham S, Haak H, Heimbach P, Kanzow T, Marotzke J (2009) Observed and simulated estimates of the meridional overturning circulation at 26.5°N in the Atlantic. Ocean Sci 5(4):575–589. doi: 10.5194/os-5-575-2009 CrossRefGoogle Scholar
  3. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc. doi: 10.1002/qj.2063
  4. Boer GJ, Kharin VV, Merryfield WJ (2013) Decadal predictability and forecast skill. Clim Dyn 41(7–8):1817–1833. doi: 10.1007/s00382-013-1705-0 CrossRefGoogle Scholar
  5. Bryden HL, Imawaki S (2001) Chapter 6.1 Ocean heat transport. In: Gerold Siedler JC, Geophysics JGBTI (eds) Ocean circulation and climate observing and modelling the global ocean, vol 77. Academic Press, pp 455–474. doi: 10.1016/S0074-6142(01)80134-0
  6. Chidichimo MP, Kanzow T, Cunningham SA, Johns WE, Marotzke J (2010) The contribution of eastern-boundary density variations to the Atlantic meridional overturning circulation at 26.5°N. Ocean Sci 6(2):475–490. doi: 10.5194/os-6-475-2010 CrossRefGoogle Scholar
  7. Collins M, Sinha B (2003) Predictability of decadal variations in the thermohaline circulation and climate. Geophys Res Lett 30(6):1306. doi: 10.1029/2002GL016504 CrossRefGoogle Scholar
  8. Collins M, Botzet M, Carril AF, Drange H, Jouzeau A, Latif M, Masina S, Otteraa OH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006) Interannual to decadal climate predictability in the north atlantic: a multimodel-ensemble study. J Clim 19(7):1195–1203. doi: 10.1175/JCLI3654.1 CrossRefGoogle Scholar
  9. Cunningham SA, Marsh R (2010) Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip Rev Clim Change 1:180–191. doi: 10.1002/wcc.22 Google Scholar
  10. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi J, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science (New York, NY) 317(5840):935–8. doi: 10.1126/science.1141304 CrossRefGoogle Scholar
  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  12. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(6811):453–457. doi: 10.1038/35044048 CrossRefGoogle Scholar
  13. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597. doi: 10.1002/jame.20038 CrossRefGoogle Scholar
  14. Hawkins E, Sutton R (2008) Potential predictability of rapid changes in the Atlantic meridional overturning circulation. Geophys Res Lett 35(11):L11603. doi: 10.1029/2008GL034059
  15. Hirschi J, Baehr J, Marotzke J, Stark J, Cunningham S, Beismann JO (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophys Res Lett 30(7):1413. doi: 10.1029/2002GL016776 CrossRefGoogle Scholar
  16. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen CS, Shaw B, Curry R (2011) Continuous, array-based estimates of atlantic ocean heat transport at 26.5°N. J Clim 24(10):2429–2449. doi: 10.1175/2010JCLI3997.1 CrossRefGoogle Scholar
  17. Jungclaus J, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch J (2013) Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-Earth system model. J Adv Model Earth Syst 5:422–446. doi: 10.1002/jame.20023 CrossRefGoogle Scholar
  18. Kanzow T, Cunningham SA, Rayner D, Hirschi JJM, Johns WE, Baringer MO, Bryden HL, Beal LM, Meinen CS, Marotzke J (2007) Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science (New York, NY) 317(5840):938–41. doi: 10.1126/science.1141293 CrossRefGoogle Scholar
  19. Kanzow T, Cunningham SA, Johns WE, Hirschi JJM, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23(21):5678–5698. doi: 10.1175/2010JCLI3389.1 CrossRefGoogle Scholar
  20. Marsland S, Haak H, Jungclaus J, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5(2):91–127. doi: 10.1016/S1463-5003(02)00015-X CrossRefGoogle Scholar
  21. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012a) Multiyear prediction of monthly mean Atlantic Meridional Overturning Circulation at 26.5°N. Science (New York, NY) 335(6064):76–9. doi: 10.1126/science.1210299 CrossRefGoogle Scholar
  22. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012b) Response to comment on “Multiyear prediction of monthly mean atlantic meridional overturning circulation at 26.5°N”. Science 338(6107):604–604. doi: 10.1126/science.1223200
  23. Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012c) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim 25(24):8502–8523. doi: 10.1175/JCLI-D-11-00633.1 CrossRefGoogle Scholar
  24. McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys Res Lett 39(19):L19609. doi: 10.1029/2012GL052933
  25. McCarthy G, Smeed D, Johns W, Frajka-Williams E, Moat B, Rayner D, Baringer M, Meinen C, Collins J, Bryden H (2015) Measuring the Atlantic meridional overturning circulation at 26\(^\circ\)N. Progn Oceanogr 130:91–111. doi: 10.1016/j.pocean.2014.10.006 CrossRefGoogle Scholar
  26. Meinen CS, Baringer MO, Garcia RF (2010) Florida Current transport variability: an analysis of annual and longer-period signals. Deep Sea Res Part I Oceanogr Res Papers 57(7):835–846. doi: 10.1016/j.dsr.2010.04.001 CrossRefGoogle Scholar
  27. Msadek R, Dixon KW, Delworth TL, Hurlin W (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37(19):L19606. doi: 10.1029/2010GL044517
  28. Müller WA, Baehr J, Haak H, Jungclaus JH, Kröger J, Matei D, Notz D, Pohlmann H, von Storch JS, Marotzke J (2012) Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys Res Lett 39(22):L22707. doi: 10.1029/2012GL053326
  29. Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J Clim 19(23):6062–6067. doi: 10.1175/JCLI3941.1 CrossRefGoogle Scholar
  30. Pohlmann H, Müller WA, Kulkarni K, Kameswarrao M, Matei D, Vamborg FSE, Kadow C, Illing S, Marotzke J (2013) Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys Res Lett 40(21):5798–5802. doi: 10.1002/2013GL058051 CrossRefGoogle Scholar
  31. Rayner D, Hirschi JJM, Kanzow T, Johns WE, Wright PG, Frajka-Williams E, Bryden HL, Meinen CS, Baringer MO, Marotzke J, Beal LM, Cunningham Sa (2011) Monitoring the Atlantic meridional overturning circulation. Deep Sea Res Part II Top Studies Oceanogr 58(17–18):1744–1753. doi: 10.1016/j.dsr2.2010.10.056 CrossRefGoogle Scholar
  32. Rhines P, Häkkinen S, Josey S (2008) Is oceanic heat transport significant in the climate system? In: Dickson RR, Meincke J, Rhines P (eds) ArcticSubarctic ocean fluxes. Springer Netherlands, pp 87–109. doi: 10.1007/978-1-4020-6774-7_5
  33. Smeed DA, McCarthy GD, Cunningham SA, Frajka-Williams E, Rayner D, Johns WE, Meinen CS, Baringer MO, Moat BI, Duchez A, Bryden HL (2014) Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci 10(1):29–38. doi: 10.5194/os-10-29-2014 CrossRefGoogle Scholar
  34. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M Earth System Model: ECHAM6. J Adv Model Earth Syst 5:1–27. doi: 10.1002/jame.20015 CrossRefGoogle Scholar
  35. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science (New York, NY) 309(5731):115–8. doi: 10.1126/science.1109496 CrossRefGoogle Scholar
  36. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  37. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda Ma, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  38. Vecchi GA, Msadek R, Delworth TL, Dixon KW, Guilyardi E, Hawkins E, Karspeck AR, Mignot J, Robson J, Rosati A, Zhang R (2012) Comment on “Multiyear prediction of monthly mean Atlantic Meridional Overturning Circulation at 26.5°N”. Science (New York, NY) 338(6107):604. doi: 10.1126/science.1222566 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vasco Müller
    • 1
    • 2
    Email author
  • Holger Pohlmann
    • 3
  • André Düsterhus
    • 1
  • Daniela Matei
    • 3
  • Jochem Marotzke
    • 3
  • Wolfgang A. Müller
    • 3
  • Mathias Zeller
    • 4
  • Johanna Baehr
    • 1
  1. 1.Institute of OceanographyHamburgGermany
  2. 2.MARUM, Center for Marine Environmental SciencesUniversity of BremenBremenGermany
  3. 3.Max Planck Institute for MeteorologyHamburgGermany
  4. 4.School of Earth, Atmosphere and EnvironmentMonash UniversityMelbourneAustralia

Personalised recommendations