Climate Dynamics

, Volume 49, Issue 7–8, pp 2557–2567 | Cite as

Quantifying climate changes of the Common Era for Finland

  • Tomi P. LuotoEmail author
  • Liisa Nevalainen


In this study, we aim to quantify summer air temperatures from sediment records from Southern, Central and Northern Finland over the past 2000 years. We use lake sediment archives to estimate paleotemperatures applying fossil Chironomidae assemblages and the transfer function approach. The used enhanced Chironomidae-based temperature calibration set was validated in a 70-year high-resolution sediment record against instrumentally measured temperatures. Since the inferred and observed temperatures showed close correlation, we deduced that the new calibration model is reliable for reconstructions beyond the monitoring records. The 700-year long temperature reconstructions from three sites at multi-decadal temporal resolution showed similar trends, although they had differences in timing of the cold Little Ice Age (LIA) and the initiation of recent warming. The 2000-year multi-centennial reconstructions from three different sites showed resemblance with each other having clear signals of the Medieval Climate Anomaly (MCA) and LIA, but with differences in their timing. The influence of external forcing on climate of the southern and central sites appeared to be complex at the decadal scale, but the North Atlantic Oscillation (NAO) was closely linked to the temperature development of the northern site. Solar activity appears to be synchronous with the temperature fluctuations at the multi-centennial scale in all the sites. The present study provides new insights into centennial and decadal variability in air temperature dynamics in Northern Europe and on the external forcing behind these trends. These results are particularly useful in comparing regional responses and lags of temperature trends between different parts of Scandinavia.


Chironomidae External forcing Little Ice Age Medieval Climate Anomaly Paleoclimate Paleolimnology 



This study was funded by the Emil Aaltonen Foundation (#160156) and the Academy of Finland (#287547). The comments by the two anonymous reviewers greatly helped to improve the value of the manuscript.

Supplementary material

382_2016_3468_MOESM1_ESM.pdf (1.3 mb)
Age-depth models for the six downcore sites Hämpträsk (Luoto et al. 2008), Pieni-Kauro (Luoto and Helama 2010), Nammajavri (Rantala et al. 2016), Iso Lehmälampi (Nevalainen et al. 2008), Särkkälampi (Luoto and Nevalainen 2015) and Várddoaijávri (Luoto and Sarmaja-Korjonen 2011). See original publications for details (PDF 1368 KB)


  1. Bradley R (2000) 1000 years of climate change. Science 288:1353–1355CrossRefGoogle Scholar
  2. Bradley RS, Jones PD (1993) ‘Little Ice Age’ summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3:367–376CrossRefGoogle Scholar
  3. Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405CrossRefGoogle Scholar
  4. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P, Eronen M (1992) Fennoscandian summers from ad 500: temperature changes on short and long timescales. Clim Dyn 7:111–119CrossRefGoogle Scholar
  5. Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455CrossRefGoogle Scholar
  6. Brooks SJ (2006) Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quat Sci Rev 25:1894–1910CrossRefGoogle Scholar
  7. Cohen J, Saito K, Entekhabi D (2001) The role of the Siberian high in Northern Hemisphere climate variability. Geophys Res Lett 28:299–302CrossRefGoogle Scholar
  8. Crowley TJ, Lowery TS (2000) How warm was the medieval warm period? Ambio 29:51–54CrossRefGoogle Scholar
  9. Cumming BF, Laird KR, Fritz SC, Verschuren D (2012) Tracking Holocene climatic change with aquatic biota from lake sediments: case studies of commonly used numerical techniques. In Tracking environmental change using lake sediments. Springer, Netherlands, pp 615–642CrossRefGoogle Scholar
  10. Eggermont H, Heiri O (2012) The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biol Rev 87:430–456CrossRefGoogle Scholar
  11. Engels S, Self AE, Luoto TP, Brooks SJ, Helmens KF (2014) A comparison of three Eurasian chironomid-climate calibration datasets on a W-E continentality gradient and the implications for quantitative temperature reconstructions. J Paleolimnol 51:529–547CrossRefGoogle Scholar
  12. Esper J, Cook ER, Schweingruber FH (2002) Low frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  13. Esper J, Wilson RJ, Frank DC, Moberg A, Wanner H, Luterbacher J (2005) Climate: past ranges and future changes. Quat Sci Rev 24: 2164–2166CrossRefGoogle Scholar
  14. Gao C, Oman L, Robock A, Stenchikov GL (2007) Atmospheric volcanic loading derived from bipolar ice cores accounting for the spatial distribution of volcanic deposition. J Geophys Res 112:D09109Google Scholar
  15. Goosse H, Renssen H (2004) Exciting natural modes of variability by solar and volcanic forcing: idealized and realistic experiments. Clim Dyn 23:153–163CrossRefGoogle Scholar
  16. Grove JM (2001) The initiation of the “Little Ice Age” in regions round the North Atlantic. Clim Change 48:53–82CrossRefGoogle Scholar
  17. Hanssen-Bauer I, Achberger C, Benestad RE, Chen D, Førland EJ (2005) Statistical downscaling of climate scenarios over Scandinavia. Clim Res 29:255–268CrossRefGoogle Scholar
  18. Hass HC (1996) Northern Europe climate variations during late Holocene: evidence from marine Skagerrak. Palaeogeogr Palaeoclimatol Palaeoecol 123:121–145CrossRefGoogle Scholar
  19. Heiri O, Brooks SJ, Birks HJB, Lotter AF (2011) A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat Sci Rev 30:3445–3456CrossRefGoogle Scholar
  20. Heiri O et al (2014) Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat Commun 5:4914CrossRefGoogle Scholar
  21. Helama S, Meriläinen J, Tuomenvirta H (2009a) Multi-centennial megadrought in northern Europe coincided with a global El NiñoeSouthern oscillation drought pattern during the medieval climate anomaly. Geology 37:175–178CrossRefGoogle Scholar
  22. Helama S, Timonen M, Holopainen J, Ogurtsov MG, Mielikäinen K, Eronen M, Lindholm M, Meriläinen J (2009b) Summer temperature variations in Lapland during the Medieval Warm Period and the Little Ice Age relative to natural instability of thermohaline circulation on multi-decadal and multi-centennial scales. J Quatern Sci 24:450–456CrossRefGoogle Scholar
  23. Holopainen J, Helama S (2009) Little Ice Age farming in Finland: Preindustrial agriculture on the edge of the Grimm Reaper’s scythe. Hum Ecol 37:213–225CrossRefGoogle Scholar
  24. Holopainen J, Helama S, Kajander JM, Korhonen J, Nevanlinna H, Reissell A, Salonen V-P (2009) A multiproxy reconstruction of spring temperatures in south-west Finland since 1750. Clim Change 92:213–233CrossRefGoogle Scholar
  25. Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757CrossRefGoogle Scholar
  26. Jansen E et al (2007) Palaeoclimate. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  27. Jirikowic JL, Damon PE (1994) The Medieval Solar Activity Maximum. Clim Change 26:309–316CrossRefGoogle Scholar
  28. Jones PD, Briffa KR (2001) The “Little Ice Age”: local and global perspectives. Clim Change 48:5–8CrossRefGoogle Scholar
  29. Kepsu S (2001). Hankalaa. In: Mallat K, Ainiala T, Kiviniemi E (eds) Nimien maailmasta. Helsinki Helsingin Yliopiston Suomen Kielen Laitos location, Helsinki, pp 137–155Google Scholar
  30. Larocque-Tobler I, Filipiak J, Tylmann, W, Bonk A, Grosjean M (2015) Comparison between chironomid-inferred mean-August temperature from varved Lake Żabińskie (Poland) and instrumental data since 1896 AD. Quat Sci Rev 111:35–50CrossRefGoogle Scholar
  31. Lindgrén S, Neumann J (1981) The cold and wet year 1695—a contemporary German account. Clim Change 3:173–187CrossRefGoogle Scholar
  32. Lindkvist T (2002) Sverige och Finland under tidig medeltid. In: Ivars AM, Huldén L (eds) När kom Svenskarna till Finland? Skrifter utgivna av Svenska litteratursällskapet i Finland, Helsingfors, pp 39–50Google Scholar
  33. Luoto TP (2009) Subfossil Chironomidae (Insecta: Diptera) along a latitudinal gradient in Finland: development of a new temperature inference model. J Quat Sci 24:150–158CrossRefGoogle Scholar
  34. Luoto TP, Helama S (2010) Palaeoclimatological and palaeolimnological records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quat Sci Rev 29:2411–2423CrossRefGoogle Scholar
  35. Luoto TP, Nevalainen L (2015) Late Holocene precipitation and temperature changes in Northern Europe linked with North Atlantic forcing. Clim Res 66:37–48CrossRefGoogle Scholar
  36. Luoto TP, Ojala AEK (2014) Paleolimnological assessment of ecological integrity and eutrophication history for Lake Tiiläänjärvi (Askola, Finland). J Paleolimnol 51:455–468CrossRefGoogle Scholar
  37. Luoto TP, Sarmaja-Korjonen K (2011) Midge-inferred Holocene effective moisture fluctuations in a subarctic lake, northern Lapland. Boreas 40:650–659CrossRefGoogle Scholar
  38. Luoto TP, Nevalainen L, Sarmaja-Korjonen K (2008) Multiproxy evidence for the ‘Little Ice Age’ from Lake Hampträsk, southern Finland. J Paleolimnol 40:1097–1113Google Scholar
  39. Luoto TP, Sarmaja-Korjonen K, Nevalainen L, Kauppila T (2009) A 700 year record of temperature and nutrient changes in a small eutrophied lake in southern Finland. Holocene 19:1063–1072CrossRefGoogle Scholar
  40. Luoto TP, Helama S, Nevalainen L (2013) Stream flow intensity of the Saavanjoki River, eastern Finland, during the past 1500 years reflected by mayfly and caddisfly mandibles in adjacent lake sediments. J Hydrol 476:147–153CrossRefGoogle Scholar
  41. Luoto TP, Kaukolehto M, Weckström J, Korhola A, Väliranta M (2014) New evidence of warm early-Holocene summers in subarctic Finland based on an enhanced regional chironomid-based temperature calibration model. Quat Res 81:50–62CrossRefGoogle Scholar
  42. Luoto TP, Rantala MV, Galkin A, Rautio M, Nevalainen L (2016) Environmental determinants of chironomid communities in remote northern lakes across the treeline – Implications for climate change assessments. Ecol Ind 61:991–999CrossRefGoogle Scholar
  43. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  44. Marshall J, Kushnir Y, Battiste D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898CrossRefGoogle Scholar
  45. Matthews JA, Berrisford MS, Dressera PQ, Nesje A, Dahl SO, Bjune AE, Bakke JH, Birks JB, Lie Ø, Dumayne-Peaty L, Barnetth E (2005) Holocene glacier history of Bjørnbreen and climatic reconstruction in central Jotunheimen, Norway, based on proximal glaciofluvial stream-bank mires. Quat Sci Rev 24:67–90CrossRefGoogle Scholar
  46. Mitchell JFB, Karoly DJ, Hegerl GC, Zwiers FW, Allen MR, Marengo J (2001) Detection of climate change and attribution of causes. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 695–738Google Scholar
  47. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  48. Nesje A, Dahl SO, Thun T, Nordli Ø (2008) The ‘Little Ice Age’ glacial expansion in western Scandinavia: summer temperature or winter precipitation? Clim Dyn 30:789–801CrossRefGoogle Scholar
  49. Nevalainen L, Luoto TP (2012) Intralake training set of fossil Cladocera for paleohydrological inferences: evidence for multicentennial drought during the Medieval Climate Anomaly. Ecohydrology 5:834–840CrossRefGoogle Scholar
  50. Nevalainen L, Luoto TP, Sarmaja-Korjonen K (2008) Late Holocene water-level changes in Lake Iso Lehmälampi, southern Finland, reflected in subfossil cladocerans and chironomids. Studia Quaternaria 25:33–42Google Scholar
  51. Nevalainen L, Helama S, Luoto TP (2013) Hydroclimatic variations over the last millennium in eastern Finland disentangled by fossil Cladocera. Palaeogeogr Palaeoclimatol Palaeoecol 378:13–21CrossRefGoogle Scholar
  52. Nyman M, Korhola A, Brooks SJ (2005) The distribution and diversity of Chironomidae (Insecta: Diptera) in western Finnish Lapland, with special emphasis on shallow lakes. Glob Ecol Biogeogr 14:137–153CrossRefGoogle Scholar
  53. Osborn TJ, Briffa KR (2006) The spatial extent of twentieth-century warmth in the contex of the past 1200 years. Science 311:841–844CrossRefGoogle Scholar
  54. PAGES 2k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346CrossRefGoogle Scholar
  55. Rantala MV, Luoto TP, Nevalainen L (2016) Temperature controls organic carbon sequestration in a subarctic lake. Sci Rep 6:34780CrossRefGoogle Scholar
  56. Rantanen A, Kuvaja C (1994) Sipoon pitäjän historia vuoteen 1868 I. Sipoon kunta, Sipoo (in Finnish)Google Scholar
  57. Self AE, Brooks SJ, Birks HJB, Nazarova L, Porinchu D, Odland A, Yang H, Jones VJ (2011) The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia. Quat Sci Rev 30:1122–1141CrossRefGoogle Scholar
  58. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder Minimum. Science 294:2149–2152CrossRefGoogle Scholar
  59. Steinhilber F et al (2012) 9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc Natl Acad Sci USA 109:5967–5971CrossRefGoogle Scholar
  60. Stott PA, Jones GS, Mitchell JFB (2003) Do models underestimate the solar contribution to recent climate change? J Clim 16:4079–4093CrossRefGoogle Scholar
  61. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  62. Thompson DW, Wallace JM (2001) Regional climate impacts of the Northern Hemisphere annular mode. Science 293:85–89CrossRefGoogle Scholar
  63. Tiljander M, Saarnisto M, Ojala AEK, Saarinen T (2003) A 3000-year palaeoenvironmental record from annually laminated sediments of Lake Korttajärvi, central Finland. Boreas 32:233–243Google Scholar
  64. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324:78–80CrossRefGoogle Scholar
  65. Tuomenvirta H (2004) Reliable estimation of climatic variations in Finland. Finnish Meteorological Institution Contribution, Helsinki, pp 1–79Google Scholar
  66. Vesajoki H, Holopainen J (1998) The early temperature records of Turku (Åbo), south-west Finland 1749–1800. Paläoklimaforschung Palaeoclimate Res 23:151–161Google Scholar
  67. Visbeck MH, Hurrell JW, Polvani L, Cullen HM (2001) The North Atlantic Oscillation: past, present, and future. Proc Natl Acad Sci USA 98:12876–12877CrossRefGoogle Scholar
  68. Wanner H et al (2008) Mid-to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  69. Weckström J, Korhola A, Erästö P, Holmström L (2006) Temperature patterns over the past eight centuries in Northern Fennoscandia inferred from sedimentary diatoms. Quat Res 66:78–86CrossRefGoogle Scholar
  70. Wilmi J (2003) Kuhmon historia. Otavan Kirjapaino Oy, KeuruuGoogle Scholar
  71. Zawiska I, Luoto TP, Nevalainen L, Tylmann W, Jensen TC, Obremska M, Słowiński M, Woszczyk M, Schartau AK, Walseng B (2016) Climate variability and lake ecosystem responses in western Scandinavia (Norway) during the last Millennium. Palaeogeogr Palaeoclimatol Palaeoecol. doi: 10.1016/j.palaeo.2016.11.034 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland

Personalised recommendations