Climate Dynamics

, Volume 49, Issue 5–6, pp 1813–1831 | Cite as

Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models

  • Marika M. Holland
  • Laura Landrum
  • Yavor Kostov
  • John Marshall


We assess the sea ice response to Southern Annular Mode (SAM) anomalies for pre-industrial control simulations from the Coupled Model Intercomparison Project (CMIP5). Consistent with work by Ferreira et al. (J Clim 28:1206–1226, 2015. doi:10.1175/JCLI-D-14-00313.1), the models generally simulate a two-timescale response to positive SAM anomalies, with an initial increase in ice followed by an eventual sea ice decline. However, the models differ in the cross-over time at which the change in ice response occurs, in the overall magnitude of the response, and in the spatial distribution of the response. Late twentieth century Antarctic sea ice trends in CMIP5 simulations are related in part to different modeled responses to SAM variability acting on different time-varying transient SAM conditions. This explains a significant fraction of the spread in simulated late twentieth century southern hemisphere sea ice extent trends across the model simulations. Applying the modeled sea ice response to SAM variability but driven by the observed record of SAM suggests that variations in the austral summer SAM, which has exhibited a significant positive trend, have driven a modest sea ice decrease. However, additional work is needed to narrow the considerable model uncertainty in the climate response to SAM variability and its implications for 20th–21st century trends.


Antarctic sea ice Southern Annular Mode Climate models 


  1. Arblaster JM, Meehl GA (2006) Contributions of external forcings to Southern Annular Mode trends. J Clim 19:2896–2905CrossRefGoogle Scholar
  2. Bitz CM, Polvani LM (2012) Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model. Geophys Res Lett. doi:10.1029/2012GL053393 Google Scholar
  3. Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res. doi:10.1029/2006JD007859 Google Scholar
  4. Cionni I, Eyring V, Lamarque JF, Randel WJ, Stevenson DS, Wu F, Bodeker GE, Shepherd TG, Shindell DT, Waugh DW (2011) Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos Chem Phys Discuss 11(4):10875–10933CrossRefGoogle Scholar
  5. Comiso JC (2000, updated 2015) Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 2 [1979–2005]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi:
  6. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776 CrossRefGoogle Scholar
  7. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  8. Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x CrossRefGoogle Scholar
  9. Downes SM, Hogg AM (2013) Southern Ocean circulation and eddy compensation in CMIP5 models. J Clim 26(18):7198–7220CrossRefGoogle Scholar
  10. Eyring V et al (2013) Long-term ozone changes and associated climate impacts in CMIP5 simulations. J Geophys Res Atmos 118:5029–5060. doi:10.1002/jgrd.50316 CrossRefGoogle Scholar
  11. Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A (2015) Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J Clim 28:1206–1226. doi:10.1175/JCLI-D-14-00313.1 CrossRefGoogle Scholar
  12. Fetterer F, Knowles K, Meier W, Savoie M (2002) Sea Ice Index. National Snow and Ice Data Center, Boulder. doi:10.7265/N5QJ7F7W Google Scholar
  13. Fogt RL, Wovrosh AJ, Langen RA, Simmond I (2012) The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low. J Geophys Res 117:D07111. doi:10.1029/2011JD017337 CrossRefGoogle Scholar
  14. Hall A, Visbeck M (2002) Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the Annular Mode. J Clim 15:3043–3057CrossRefGoogle Scholar
  15. Hansen J et al (2007) Climate simulations for 1880–2003 with GISS modelE. Clim Dyn 29(7–8):661–696CrossRefGoogle Scholar
  16. Hasselmann K, Sausen R, Maier-Reimer E, Voss R (1993) On the cold start problem in transient simulations with coupled atmosphere-ocean models. Clim Dyn 9:53–61. doi:10.1007/BF00210008 CrossRefGoogle Scholar
  17. Hobbs WR, Bindoff NL, Raphael MN (2015) New perspective on observed and simulated Antarctic sea ice extent trends using optimal fingerprinting techniques. J Clim 28:1543–1560. doi:10.1175/JCLI-D-14-00367.1 CrossRefGoogle Scholar
  18. Hosking JS, Orr A, Marshall GJ, Turner J, Phillips T (2013) The influence of the Amundsen-Bellingshausen Seas low on the climate of West Antarctic and its representation in coupled climate model simulations. J Clim 26:6633–6648. doi:10.1175/JCLI-D-12-00813.1 CrossRefGoogle Scholar
  19. Hurrell JW et al (2013) The community earth system model: a framework for collaborative research. Bull Am Met Soc. doi:10.1175/BAMS-D-12-00121.1 Google Scholar
  20. Hwang YT, Frierson DMW (2013) A link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc Natl Acad Sci 110:4935–4940. doi:10.1073/pnas.1213302110 CrossRefGoogle Scholar
  21. Kawase H, Nagashima T, Sudo K, Nozawa T (2011) Future changes in tropospheric ozone under representative concentration pathways (RCPs). Geophys Res Lett 38:L05801. doi:10.1029/2010GL046402 CrossRefGoogle Scholar
  22. Kay JE et al (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Met Soc 96:1333–1349. doi:10.1175/BAMS-D-13-00255.1 CrossRefGoogle Scholar
  23. Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40:1194–1199. doi:10.1002/grl.50256 CrossRefGoogle Scholar
  24. Kostov Y, Marshall J, Hausmann U, Armour KC, Ferreira D, Holland MM (2016) Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim Dyn. doi:10.1007/s00382-016-3162-z Google Scholar
  25. Kwok R, Comiso JC (2002) Spatial patterns of variability in Antarctic surface temperature: connections to the Southern Hemisphere Annular Mode and the southern oscillation. Geophy Res Lett. doi:10.1029/2002GL015415 Google Scholar
  26. Lamarque JF, Kyle GP, Meinshausen M, Riahi K, Smith SJ, van Vuuren DP, Conley AJ, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Clim Chang 109:191–212CrossRefGoogle Scholar
  27. Lefebvre W, Goosse H, Timmermann R, Fichefet T (2004) Influence of the Southern Annular Mode on the sea ice–ocean system. J Geophys Res. doi:10.1029/2004JC002403 Google Scholar
  28. Mahlstein I, Gent PR, Solomon S (2013) Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations. J Geophys Res Atmos 118:5105–5110. doi:10.1002/jgrd.50443 CrossRefGoogle Scholar
  29. Marsh D, Mills M, Kinnison DE, Lamarque JF (2013) Climate change from 1850 to 2005 simulated in CESM1(WACCM). J Clim 26:7372–7391. doi:10.1175/JCLI-D-12-00558.1 CrossRefGoogle Scholar
  30. Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16:4134–4143. doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 CrossRefGoogle Scholar
  31. Pezza AB, Rashid HA, Simmonds I (2012) Climate links and recent extremes in Antarctic sea ice, high-latitude cyclones, Southern Annular Model and ENSO. Clim Dyn 38:57–73. doi:10.1007/s00382-011-1044-y CrossRefGoogle Scholar
  32. Phillips AS, Deser C, Fasullo J (2014) A new tool for evaluating modes of variability in climate models. EOS 95:453–455. doi:10.1002/2014EO490002 CrossRefGoogle Scholar
  33. Polvani LM, Smith KL (2013) Can natural variability explains observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys Res Lett 40:3195–3199. doi:10.1002/grl.50578 CrossRefGoogle Scholar
  34. Previdi M, Smith KL, Polvani LM (2015) How well do the CMIP5 models simulate the Antarctic atmospheric energy budget? J Clim 28(20):7933–7942CrossRefGoogle Scholar
  35. Raphael M, Holland MM (2006) Twentieth century simulation of the Southern Hemisphere in coupled models. Part I: large scale circulation variability. Clim Dyn 26:217–228. doi:10.1007/s00382-005-0082-8 CrossRefGoogle Scholar
  36. Sallée JB, Shuckburgh E, Bruneau N, Meijers AJS, Bracegirdle TJ, Wang Z, Roy T (2013) Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response. J Geophys Res Oceans 118:1830–1844. doi:10.1002/jgrc.20135 CrossRefGoogle Scholar
  37. Schneider DP, Reusch DB (2016) Antarctic and Southern Ocean surface temperatures in CMIP5 models in the context of the surface energy budget. J Clim 29(5):1689–1716CrossRefGoogle Scholar
  38. Sen Gupta A, England M (2006) Coupled ocean-atmosphere feedback in the Southern Annular Mode. J Clim 20:3677–3692CrossRefGoogle Scholar
  39. Shu Q, Song Z, Qiao F (2015) Assessment of sea ice simulations in the CMIP5 models. Cryosphere 9(1):399–409CrossRefGoogle Scholar
  40. Sigmond M, Fyfe JC (2010) Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys Res Lett 37:L18502. doi:10.1029/2010GL044301 Google Scholar
  41. Sigmond M, Fyfe JC (2014) The Antarctic sea ice response to the ozone hole in climate models. J Clim 27:1336–1342. doi:10.1175/JCLI-D-13-00590.1 CrossRefGoogle Scholar
  42. Simmonds I (2015) Comparing and contrasting the behavior of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann Glaciol 56:18–28. doi:10.3189/2015AoG69A909 CrossRefGoogle Scholar
  43. Simpkins GR, Ciasto LM, Thompson DWJ, England MH (2012) Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J Clim 25:5451–5469. doi:10.1175/JCLI-D-11-00367.1 CrossRefGoogle Scholar
  44. Smith KL, Polvani LM, Marsh DR (2012) Mitigation of 21st century Antarctic sea ice loss by stratospheric ozone recovery. Geophys Res Lett 39:L20701. doi:10.1029/2012GL053325 CrossRefGoogle Scholar
  45. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J Geophys Res 108:C03S90. doi:10.1029/2007JC004269 Google Scholar
  46. Swart NC, Fyfe JC, Gillett N, Marshall GJ (2015) Comparing trends in the Southern Annular Mode and surface westerly jet. J Clim 28:8840–8859. doi:10.1175/JCLI-D-15-0334.1 CrossRefGoogle Scholar
  47. Szopa S et al (2013) Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Clim Dyn 40:2223–2250. doi:10.1007/s00382-012-1408-y CrossRefGoogle Scholar
  48. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  49. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296(5569):895–899. doi:10.1126/science.1069270 CrossRefGoogle Scholar
  50. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  51. Thompson DWJ et al (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741749. doi:10.1038/ngeo1296 Google Scholar
  52. Turner J, Bracegirdle TJ, Phillips T, Marshall GJ, Hosking JS (2013a) An initial assessment of Antarctic sea ice extent in the CMIP5 models. J Clim 26:1473–1484. doi:10.1175/JCLI-D-12-00068.1 CrossRefGoogle Scholar
  53. Turner J, Phillips T, Hosking JS, Marshall GJ, Orr A (2013b) The Amundsen Sea Low. Int J Climatol 33:1818–1829. doi:10.1002/joc.3558 CrossRefGoogle Scholar
  54. Turner J, Hosking JS, Bracegirdle TJ, Marshall GJ, Phillips T (2015) Recent changes in Antarctic sea ice. Phil Trans R Soc A 373:20140163. doi:10.1098/rsta.2014.0163 CrossRefGoogle Scholar
  55. Zunz V, Goosse H, Massonnet F (2013) How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere 7:451–468. doi:10.5194/tc-7-451-2013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.NCARBoulderUSA
  2. 2.MITCambridgeUSA

Personalised recommendations