Climate Dynamics

, Volume 49, Issue 5–6, pp 1705–1727 | Cite as

Time-varying spectral characteristics of ENSO over the Last Millennium

  • Pandora Hope
  • Benjamin J. Henley
  • Joelle Gergis
  • Josephine Brown
  • Hua Ye


The characteristics of El Nino–Southern Oscillation (ENSO) spectra over the Last Millennium are examined to characterise variability over past centuries. Seven published palaeo-ENSO reconstructions and Nino3.4 from six Coupled Model Intercomparison Project-Phase 5 and Paleoclimate Modelling Intercomparison Project-Phase 3 (CMIP5–PMIP3) Last Millennium simulations were analysed. The corresponding Historical and pre-industrial Control CMIP5–PMIP3 simulations were also considered. The post-1850 spectrum of each modelled or reconstructed ENSO series captures aspects of the observed spectrum to varying degrees. We note that no single model or ENSO reconstruction completely reproduces the instrumental spectral characteristics. The spectral power across the 2–3 years (near biennial), 3–8 years (classical ENSO) and 8–25 years (decadal) periodicity bands was calculated in a sliding 50 year window, revealing temporal variability in the spectra. There was strong temporal variability in the spectral power of each periodicity band in observed Nino3.4 and SOI and for all reconstructions and simulations of ENSO. Significant peaks in spectral power such as observed in recent decades also occur in some of the reconstructed palaeo-ENSO (around 1600, the early 1700s and 1900) and modelled series (around the major volcanic eruptions of 1258 and 1452). While the recent increase in spectral power might be in response to enhanced greenhouse gas levels, the increase lies within the range of variability across the suite of ENSO reconstructions and simulations examined here. This study demonstrates that the analysis of a suite of ENSO reconstructions and model simulations can build a broader understanding of the time-varying nature of ENSO spectra, and how the nature of the past spectra of ENSO is to some extent dependant on the climate model or palaeo-ENSO reconstruction chosen.


El Niño–Southern Oscillation ENSO SOI Nino3.4 Last Millennium Climate model simulations Spectra CMIP5 PMIP Decadal variability 



The contribution of JRB and PH was supported by the Australian Climate Change Science Program. BH acknowledges funding from the Collaborative Research Network (CRN) for ‘Self-sustaining Regions Research and Innovation Initiative’ and ARC Linkage Project LP150100062. JG is supported by an Australian Research Council Fellowship DE130100668. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also thank the PAGES 2K–PMIP working group for making the ENSO reconstruction dataset readily available. We thank Sophie Lewis for discussion on model evaluation, Francois Delage for help with accessing the climate model data, Karl Braganza for his enthusiasm for exploring spectra, David Karoly for his measured suggestions, and Guomin Wang and Christine Chung for early reviews.

Supplementary material

382_2016_3393_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1681 kb)


  1. Adams JB, Mann M, Ammann C (2003) Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426:274–278CrossRefGoogle Scholar
  2. Allan R (2000) ENSO and climatic variability in the past 150 years. In: Diaz H, Markgraf V (eds) El Nino and the Southern Oscillation: multiscale variability and global and regional impacts. Cambridge University Press, Cambridge, pp 3–35Google Scholar
  3. Allan R, D’Arrigo R (1999) ‘Persistent’ ENSO sequences: how unusual was the 1990–1995 El Nino? The Holocene 9(1):101–118CrossRefGoogle Scholar
  4. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  5. Allan R, Nicholls N, Jones P, Butterworth I (1991) A further extension of the Tahiti-Darwin SOI, early SOI results and Darwin pressure. J Clim 4(7):743–749CrossRefGoogle Scholar
  6. Allan R, Lindsay J, Parker D (1996) El Nino Southern Oscillation and climate variability. CSIRO, MelbourneGoogle Scholar
  7. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci 104(10):3713–3718CrossRefGoogle Scholar
  8. An S, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  9. Ault TR, Cole JE, Overpeck JT, Pederson GT, St. George S, Otto-Bliesner B, Woodhouse CA, Deser C (2013) The Continuum of hydroclimate variability in western North America during the Last Millennium. J Clim 26(16):5863–5878CrossRefGoogle Scholar
  10. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42(7–8):1999–2018CrossRefGoogle Scholar
  11. Berger A (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  12. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18(4):820–829CrossRefGoogle Scholar
  13. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  14. Borlace S, Cai W, Santoso A (2013) Multidecadal ENSO amplitude variability in a 1000-yr simulation of a coupled global climate model: implications for observed ENSO variability. J Clim 26(23):9399–9407CrossRefGoogle Scholar
  15. Bradley R (1996) Are there optimum sites for global paleotemperature reconstruction? In: Jones P, Bradley R, Jouzel J (eds) Climate variations and forcing mechanisms of the last 2000 years. Springer, Berlin, pp 603–624CrossRefGoogle Scholar
  16. Braganza K, Gergis J, Power S, Risbey J, Fowler A (2009) A multiproxy index of the El Nino–Southern Oscillation, A.D. 1525–1982. J Geophys Res 114(D5):D05106CrossRefGoogle Scholar
  17. Briffa K, Jones P (1990) Basic chronology statistics and assessment. In: Cook E, Kairiukstis L (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic, DordrechtGoogle Scholar
  18. Brown JR, Hope P, Gergis J, Henley BJ (2015) ENSO teleconnections with Australian rainfall in coupled model simulations of the Last Millennium. Clim Dyn. doi: 10.1007/s00382-015-2824-6 Google Scholar
  19. Christensen JH, Krishna-Kumar K, Aldrian E, An SI, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau NC, Renwick J, Stephenson DB, Xie SP, Zhou T (2013) Chapter 14: climate phenomena and their relevance for future regional climate change. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, CambridgeGoogle Scholar
  20. Cole J, Overpeck J, Cook E (2002) Multiyear La Niña events and persistent drought in the contiguous United States. Geophys Res Lett 29(13):25/1–25/4CrossRefGoogle Scholar
  21. Collins M, An S, Cai W, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Nino. Nat Geosci 3(6):391–397CrossRefGoogle Scholar
  22. Crowley TJ, Unterman MB (2013) Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst Sci Data 5(1):187–197CrossRefGoogle Scholar
  23. Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon Y-O, Ohba M (2011) ENSO and Pacific decadal variability in the community climate system model version 4. J Clim 25(8):2622–2651CrossRefGoogle Scholar
  24. Diaz H, Hoerling M, Eischieid J (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862CrossRefGoogle Scholar
  25. Dlugokencky E, Tans P (2016) NOAA/ESRL.
  26. Emile-Geay J, Seager R, Cane M, Cook E, Haug G (2008) Volcanoes and ENSO over the past millennium. J Clim 21(13):3134–3148CrossRefGoogle Scholar
  27. Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013a) Estimating central equatorial Pacific SST variability over the past millennium. Part 1: methodology and validation. J Clim 26:2302–2328CrossRefGoogle Scholar
  28. Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013b) Estimating central equatorial Pacific SST variability over the past millennium. Part 2: reconstructions and implications. J Clim 26:2329–2352CrossRefGoogle Scholar
  29. Farneti R, Molteni F, Kucharski F (2014) Pacific interdecadal variability driven by tropical-extratropical interactions. Clim Dyn 42(11–12):3337–3355CrossRefGoogle Scholar
  30. Fernández-Donado L, González-Rouco JF, Raible CC, Ammann CM, Barriopedro D, García-Bustamante E, Jungclaus JH, Lorenz SJ, Luterbacher J, Phipps SJ, Servonnat J, Swingedouw D, Tett S, Wagner S, Yiou P, Zorita E (2013) Large-scale temperature response to external forcing in simulations and reconstructions of the Last Millennium. Clim Past 9:393–421CrossRefGoogle Scholar
  31. Flato G et al (2013) Evaluation of climate models. Climate change (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, In: Stocker TF et al (eds) Cambridge University Press, Cambridge, pp 741–866.
  32. Fowler AM, Boswijk G, Lorrey A, Gergis J, Pirie M, McCloskey S, Palmer J, Wunder J (2012) Multi-centennial tree-ring record of ENSO-related activity in New Zealand. Nat Clim Change 2(3):172–176CrossRefGoogle Scholar
  33. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J Geophys Res 113(D23):D23111CrossRefGoogle Scholar
  34. Gergis J, Fowler A (2005) Classification of synchronous oceanic and atmospheric El Niño–Southern Oscillation (ENSO) events for palaeoclimate reconstruction. Int J Climatol 25:1541–1565CrossRefGoogle Scholar
  35. Gergis J, Fowler A (2009) A history of El Niño–Southern Oscillation (ENSO) events since A.D. 1525: implications for future climate change. Clim Change 92(3):343–387CrossRefGoogle Scholar
  36. Gergis J, Braganza K, Fowler A, Risbey J, Mooney S (2006) Reconstructing El Nino–Southern Oscillation (ENSO) from high-resolution palaeoarchives. J Quat Sci 21(7):707–722CrossRefGoogle Scholar
  37. Glantz MH (2001) Currents of change: impacts of El Niño and La Niña on climate and society. Cambridge Univeristy Press, CambrideGoogle Scholar
  38. Gu D, Philander G (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807CrossRefGoogle Scholar
  39. Hanley D, Bourassa M, O’Brian J, Smith S, Spade E (2003) A quantitative evaluation of ENSO indices. J Clim 16:1249–1258CrossRefGoogle Scholar
  40. Hereid KA, Quinn TM, Taylor FW, Shen C-C, Lawrence Edwards R, Cheng H (2012) Coral record of reduced El Niño activity in the early 15th to middle 17th centuries. Geology 41(1):51–54CrossRefGoogle Scholar
  41. Hourdin F, Foujols M-A, Codron F, Guemas V, Dufresne J-L, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40(9–10):2167–2192CrossRefGoogle Scholar
  42. Jungclaus JH, Giorgetta M, Reick C, Legutke S, Brovkin V, Crueger T, Esch M, Fieg K, Fischer N, Glushak K, Gayler V, Haak H, Hollweg HD, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Müller W, Notz D, Pohlmann T, Raddatz T, Rast S, Roeckner E, Salzmann M, Schmidt H, Schnur R, Segschneider J, Six K, Stockhause M, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2012) CMIP5 simulations of the max planck institute for meteorology (MPI-M) based on the MPI-ESM-P model: the past 1000 experiment, served by ESGF. World Data Center Clim. doi: 10.1594/WDCC/CMIP5.MXEPpk Google Scholar
  43. Kestin T, Karoly D, Yano JI (1998) Time-frequency variability of ENSO and stochastic simulations. J Clim 11:2258–2272CrossRefGoogle Scholar
  44. Kiem AS, Franks SW, Kuczera G (2003) Multi-decadal variability of flood risk. Geophys Res Lett 30(2):1035CrossRefGoogle Scholar
  45. Kociuba G, Power SB (2015) Inability of CMIP5 models to simulate recent strengthening of the walker circulation: implications for projections. J Clim 28(1):20–35CrossRefGoogle Scholar
  46. Krivova NA, Vieira LEA, Solanki SK (2010) Reconstruction of solar spectral irradiance since the Maunder minimum. J Geophys Res Space Phys 115(A12):A12112CrossRefGoogle Scholar
  47. Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Rosenbloom N, Teng H (2013) Last Millennium climate and its variability in CCSM4. J Clim 26(4):1085–1111CrossRefGoogle Scholar
  48. Latif M, Barnett TP (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Clim 9(10):2407–2423CrossRefGoogle Scholar
  49. Lean J, Rottman G, Harder J, Kopp G (2005) SORCE contributions to new understanding of global change and solar variability. In: Rottman G, Woods T, George V (eds) The solar radiation and climate experiment (SORCE). Springer, New York, pp 27–53CrossRefGoogle Scholar
  50. Lewis SC, LeGrande AN (2015) Stability of ENSO and its tropical Pacific teleconnections over the Last Millennium. Clim Past 11(10):1347–1360CrossRefGoogle Scholar
  51. Li J, Xie SP, Cook ER, Huang G, D’Arrigo R, Liu F, Ma J, Zheng XT (2011) Interdecadal modulation of El Nino amplitude during the past millennium. Nat Clim Change 1:114–118CrossRefGoogle Scholar
  52. Li J, Xie S-P, Cook ER, Morales MS, Christie DA, Johnson NC, Chen F, D’Arrigo R, Fowler AM, Gou X, Fang K (2013) El Nino modulations over the past seven centuries. Nat Clim Change 3:822–826CrossRefGoogle Scholar
  53. Mann M, Lees J (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445CrossRefGoogle Scholar
  54. Mann M, Zhang Z, Rutherford S, Bradley R, Hughes M, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  55. Mc Phaden M, Zhang D (2002) Slowdown of the meridional overturning circulation in the upper Pacific ocean. Nature 415:603–608CrossRefGoogle Scholar
  56. McGregor S, Timmermann A (2011) The effect of explosive tropical volcanism on ENSO. J Clim 24(8):2178–2191CrossRefGoogle Scholar
  57. McGregor S, Timmermann A, Timm O (2010) A unified proxy for ENSO and PDO variability since 1650. Clim Past 6:1–17CrossRefGoogle Scholar
  58. McGregor S, Timmermann A, England MH, Elison Timm O, Wittenberg AT (2013) Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Clim Past 9(5):2269–2284CrossRefGoogle Scholar
  59. Neukom R, Gergis J, Karoly D, Wanner H, Curran M, Elbert J, González-Rouco F, Linsley B, Moy A, Mundo I, Raible C, Steig E, van Ommen T, Vance T, Villalba R, Zinke J, Frank D (2014) Inter-hemispheric temperature variability over the Last Millennium. Nat Clim Change 4:362–367CrossRefGoogle Scholar
  60. Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N (2016) The Pacific decadal oscillation, revisited. J Clim. doi: 10.1175/JCLI-D-15-0508.1 Google Scholar
  61. Nicholls N (1988) Low latitude volcanic eruptions and the El Nino–Southern Oscillation. J Climatol 8:91–95CrossRefGoogle Scholar
  62. Ohba M, Shiogama H, Yokohata T, Watanabe M (2013) Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J Clim 26(14):5169–5182CrossRefGoogle Scholar
  63. Percival DB, Walden AT (1993) Spectral analysis for physical applications: multitaper and conventional univariate techniques. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF (2012) The CSIRO Mk3L climate system model version 1.0-part 2 response to external forcings. Geosci Model Dev 5(3):649–682CrossRefGoogle Scholar
  65. Phipps S, McGregor H, Gergis J, Gallant AJE, Neukom R, Stevenson S, van Ommen T, Brown J, Fischer M, Ackerley D (2013) Paleoclimate data-model comparison: concepts, uncertainties and application to the climate of the past 1500 years. J Clim 26:6915–6936CrossRefGoogle Scholar
  66. Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the Last Millennium. Glob Biogeochem Cycles 22:3018. doi: 10.1029/2007gb003153 CrossRefGoogle Scholar
  67. Power S, Colman R (2006) Multi-year predictability in a coupled general circulation model. Clim Dyn 26(2–3):247–272CrossRefGoogle Scholar
  68. Power S, Kociuba G (2011) The impact of global warming on the Southern Oscillation Index. Clim Dyn 37(9–10):1745–1754CrossRefGoogle Scholar
  69. Power S, Casey T, Folland C, Colman A, Mehta V (1999a) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324CrossRefGoogle Scholar
  70. Power S, Tseitkin F, Mehta V, Lavery B, Torok S, Holbrook N (1999b) Decadal climate variability in Australia during the twentieth century. Int J Climatol 19:169–184CrossRefGoogle Scholar
  71. Rasmusson E, Carpenter T (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  72. Rasmusson E, Wallace J (1983) Meteorological aspects of the El Nino/Southern Oscillation. Science 222:1195–1202CrossRefGoogle Scholar
  73. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi: 10.1029/2002JD002670 Google Scholar
  74. Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17(19):3761–3774CrossRefGoogle Scholar
  75. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin Southern Oscillation Index. Mon Weather Rev 115:2161–2165CrossRefGoogle Scholar
  76. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths, 1850–1990. J Geophys Res Atmos 98(D12):22987–22994CrossRefGoogle Scholar
  77. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present-day atmospheric simulations using giss model E: comparison to in situ, satellite, and reanalysis data. J Clim 19(2):153–192CrossRefGoogle Scholar
  78. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.0). Geosci Model Dev 4(1):33–45CrossRefGoogle Scholar
  79. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LE (2012) Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci Model Dev 5:185–191CrossRefGoogle Scholar
  80. Stahle D, D’ Arrigo R, Krusic P, Cleaveland M, Cook E, Allan R, Cole J, Dunbar R, Therrell M, Gay D, Moore M, Stokes M, Burns B, Villanueva-Diaz J, Thompson L (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 79(10):2137–2152CrossRefGoogle Scholar
  81. Stevenson S, Otto-Bliesner B, Fasullo J, Brady E (2016) “El Niño-like” hydroclimate response to Last Millennium volcanic eruptions. J Clim 29:2907–2921CrossRefGoogle Scholar
  82. Sueyoshi T, Ohgaito R, Yamamoto A, Chikamoto MO, Hajima T, Okajima H, Yoshimori M, Abe M, O’Ishi R, Saito F, Watanabe S, Kawamiya M, Abe-Ouchi A (2013) Set-up of the PMIP3 paleoclimate experiments conducted using an earth system model, MIROC-ESM. Geosci Model Dev 6(3):819–836CrossRefGoogle Scholar
  83. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498CrossRefGoogle Scholar
  84. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):1055–1096CrossRefGoogle Scholar
  85. Timmreck C (2012) Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdiscip Rev Clim Change 3(6):545–564CrossRefGoogle Scholar
  86. Troup A (1965) The Southern Oscillation. Q J R Meteorol Soc 91:490–506CrossRefGoogle Scholar
  87. Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Wiley Interdiscip Rev Clim Change 1(2):260–270Google Scholar
  88. Vieira L, Solanki S (2009) Evolution of the solar magnetic flux on time scales of years to millennia. Astron Astrophys. doi: 10.1051/0004-6361/200913276 Google Scholar
  89. Wang YM, Lean JL, Sheeley NR Jr (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625(1):522–538CrossRefGoogle Scholar
  90. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4(4):845–872CrossRefGoogle Scholar
  91. Welch PD (1967) The use of fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73CrossRefGoogle Scholar
  92. Wilson R, Cook E, D’Arrigo R, Riedwyl N, Evans M, Tudhope A, Allan R (2010) Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections. J Quat Sci 25(1):62–78CrossRefGoogle Scholar
  93. Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36(12):L12702CrossRefGoogle Scholar
  94. Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19(5):698–722CrossRefGoogle Scholar
  95. Xin XG, Wu TW, Zhang J (2013) Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Adv Clim Change Res 4(1):41–49CrossRefGoogle Scholar
  96. Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C (2011) A record of the Southern Oscillation Index for the past 2000 years from precipitation proxies. Nat Geosci 4:611–614CrossRefGoogle Scholar
  97. Yu J-Y, Kim ST (2011) Reversed spatial asymmetries between El Niño and La Niña and their linkage to decadal ENSO modulation in CMIP3 models. J Clim 24(20):5423–5434CrossRefGoogle Scholar
  98. Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Lohmann K, Krüger K, Jungclaus JH (2012) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39(1):419–444CrossRefGoogle Scholar
  99. Zhang D, Blender R, Fraedrich K (2013) Volcanoes and ENSO in millennium simulations: global impacts and regional reconstructions in East Asia. Theor Appl Climatol 111(3):437–454CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Research and DevelopmentAustralian Bureau of MeteorologyMelbourneAustralia
  2. 2.ARC Centre of Excellence for Climate System Science, School of Earth SciencesUniversity of MelbourneParkvilleAustralia

Personalised recommendations